
k AD-AOaO 395 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOO--ETC F/6 5/2
ITHE DESIGN AND IMPLEMENTATION OF A PEDAGOGICAL RELATIONAL OATAB--ETC(U)U LD--'39 DEC 79 M A R OTH
UNCLASSIFIED AFIT/GCS/EE/79 14 NL

2 kEEEEEEEEEEElE ,E _ hhEI

EhEsohmhmohhEEEI
EEmhEEEEmhohEIEE~hhEhEE=hh

AFIT/GCS/EE/79-14

T 3HE-RESIGN AND IMPLEMENTATION OF

A PEDAGOGICALR~ELATIONAL DATABASE .aYSTEM

THESIS

AFIT/GCS/EE/79-14iMr AF')

Approved for public release; distribution unlimited

IE13 7

-~ A

* AFIT/GCS/EE/79-14

THE DESIGN AND IMPLEMENTATION OF

A PEDAGOGICAL RELATIONAL DATABASE SYSTEM

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University (ArC)

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science

by

Mark A. Roth
2Lt USAF

Graduate Computer Systems

15 December 1979

!L

PREFACE

The need for a good pedagogical tool in the area of database systems

has existed for some time. Although commercial database management systems

could be used, their complexity and lack of flexibility precludes their

use as a good instructional tool. Thus, Dr. Thomas Hartrum, on the faculty

of the AFIT/EN Electrical Engineering department, proposed that such a

tool be developed as a master's degree thesis. I undertook this project

with the goal of handing him a fully operational system at termination.

However, since a relational system was being designed to provide the neces-

sary flexibility, the problem of efficiency in relational systems became a

high priority. Thus we decided that the best approach would be to explore

the efficiency problem, and present only the front end of the system as my

final product. Hopefully, through well-structured design, coding, and

documentation, the system can be easily finished.

Many thanks are due to the members of my thesis committee for their

helpful comments both during the development and in the writing of this

document. They were advisor, Dr. Thomas Hartrum, and committee members,

Dr. Alan Ross, Dr. James Rutledge, and Dr. Kenneth Melendez. Thanks are

also due to Capt Brian Boesch for his many hours of help with the computer

system I used. He is largely responsible for the material in Appendix A.

In this vein, thanks are also due the AFIT/ENE technicians: Robert Durham,

Dan Zombon, Orville Wright, and Richard Wager. Lastly, I would like to

thank 2Lt Pete Raeth for implementing the code in the RUN module.

ti

T W I,:

CONTENTS

PREFACE.

LIST OF FIGURES. vi

LIST OF T4!kES. vii

ABSTACT. viii

1. INTRODUCTION 1

BACKGROUND....................2
STATEMENT OF PROBLEM................5
SCOPE. 5
GENERAL APPROACH 5
SEQUENCE OF PRESENTATION 6

II. HARDWARE CONSIDERATIONS. 8

MACHINE TYPE. 8
OPERATING SYSTEM 9
SUMMARY. 10

*III. THEORETICAL DEVELOPMENT 11

ADVANTAGES AND DISADVANTAGES OF RELATIONAL
SYSTEMS. 12
Simplicity of DaaSrcueDsrpin.....12
Generality of Data Description and

Manipulation. 13
Flexibility and Data Independence. 14
Fourth Normal Form and Redundancy of Data

Structure..................15
Data Manipulation vs. Data*Management........15

*User Expectations 16
SELECTION OF THE DATA MANIPULATION AND

DEFINITION LANGUAGE. 17
Definition of the Algebra and Calculus 17

Relational Algebra 17
Relational Calculus. 17
Example18.4Algebra vs. Calculus 18
Ease of Learning. 18
Ease of Use. 19
Completeness 19
Ease of Implementation.............20

Description of the Relational Algebra Based
Design. 21

Summnary. 22

SOLUTIONS TO THE PROBLEMS OF RELATIONAL
DATABASES 23
Integrity 23
Redundancy of Data and Effiiency at.the
Storage Representation Level 24
Definitions.............. A5
Implementation Technque for Images 26
Implementation Technique for Links 28
Implementation Technique for a Combined
Access Path Structure...........29
Generalization of the Combined*Acess
Path Structure 31

Summnary 34
Efficiency at the Conceptual Level. 34

SUMMARY. 37

IV. SYSTEM DEVELOPMENT. 43

SYSTEM DESIGN. 43
Initial Development 43
Future Modifications.o....... 46

IMPLEMENTATION TECHNIQUES AT THE DATA ENTRY
LEVEL47
The Abundance of Commnands. 48
Error Detection/Correction............50

IMPLEMENTATION TECHNIQUES AT THE CONCEPTUAL*
*LEVEL 51

The TREE Module. 52
The SPLITUP Module 55
The OPTIMIZE Module 56

k ~The COMBOOL Algorithm 58
The SIMSEL Algorithm..60
The SELDOWN and PROJDOWN Algorithms 62
The SELDOWN Algorithm. 62
Notes of the Efficiency of Moving SELECTs . .. 65
The PROJDOWN Algorithm. 66
Modification of the Transformation
Algorithms. 69

The OPTIMIZE Algorithm. 69
The RUN Module 70

The RUN Algorithm. 77
IMPLEMENTATION TECHNIQUES AT THE SYSTEM LEVEL . . 78

V. VERIFICATION AND VALIDATION. 79

VI. CONCLUSION 85

OVERVIEW......................5
FUTURE RECOMMENDATIONS.................86
F INAL COMMENT. 86

BIBLIOGRAPHY. 88

k iv

APPENDIX A: A COMMUNICATION NETWORK BETWEEN THE ALTAIR 8080
\(. AND THE INTEL 8080 MICROPROCESSOR SYSTEMS 90

APPENDIX B: USER'S GUIDE 110

APPENDIX C: BASIC PROCEDURES FOR IMPLEMENTING CODD'S RELATIONAL
ALGEBRA 136

VOLUME I: PROGRAM LISTINGS AND DOCUMENTATION (Available from AFIT/ENG)

LAN
I|

I

J

LIST OF FIGURES

Figure Page

1. Sample data depicted with three models 2

2. The three levels of a database system 13

3. Image implementation for I(PART(CITY)) 28

4. Link implementation of L(PART(P#),SP(P#)); link
occurrence for domain value P2 29

5. Combined implementation of link L(PART(P#),SP(P#)),
and the images I(PART(P#)) and I(SP((P#)) 30

6. Implementation of the generalized access path;
example for four relations on domain P# 33

7. All existing binary links base on P# 33

8. The basic organization of the query optimizer 35

9. System design 44

10. Multi-level user command system 49

11. Detail of EXECUTE module 53

12. (a) Set operations on SELECTs of the same relation R
(b) Transformation of the tree in (a) into a single

SELECT 59

13. (a) The tree for a user query. (b) The tree for a
transformation of the query in(a) 62

14. (a) Further transformation on the tree of Figure 13(b)
b) Final optimized tree for the query of Figure 13(a) . 67

15. (a) UP-rules applied to the tree in Figure 14(b).
(b) DOWN-rules applied to the tree in ?a) 74

16. An operator tree on the relations R1, R2, R3 75

17. a UP-rules applied to the tree in Fi ure 16
b DOWM-rules applied to the tree in ?a) 76

18. Relationship among the three levels of optimizer
and the transformations 84

* A-1. Schematic of RS-232 switch box 91

B-1. Multi-level user command system....... 111

L vi

4. LIST OF TABLES

Table Page

I Idempotency Laws of Relational Algebra 38

II Simplification Laws of Boolean Algebra 38

III Distribution Laws for Moving SELECTs Down Trees 39

IV Distribution Laws for Moving PROJECTs Down Trees 40

V Rules for Coordinating Sort Order and
Implementing Operators -- UP-rules 41

VI Rules for Coordinating Sort Order and

Implementing Operators -- DOWN-rules 42

VII Relations Used in Tests of Optimizers 81

VIII Expressions Used as Queries in Testing Optimizers 82

IX Times Taken to Answer the Queries of Table VIII 84

i

vii

ABSTRACT

A relational database system was designed with the goal of obtain-

ing as near optimal behavior from the system as possible. In addition,

the database was to be implemented as a general purpose system but with

specific provisions for its use as a pedagogical tool for teaching data-

base management and manipulation.

Toward these goals, investigt ns were made into previous

theoretical studies in the literature. The advantages and disadvan-

tages of relational systems were explored, and based on a certain

criteria a relational algebra was chosen as the basis for the data

manipulation and definition language. Solutions to the problems of

relational databases, includi tegrity, redundancy, and efficiency,

were preante n v is context.

41ith this background, a top-down structured design of the system

was completed. Techniques used to manage data entry; i.e., the user

interface, and techniques to transform those inputs in order to opti-

mize their execution were developed and implemented. These transforma-

tions formed the basis of an automatic programmer us'e to analyze and

efficiently refine high level query specifications supplied by the user.

This approach sought to minimize query response time and space utiliza-

tion by: (1) performing global query optimization, and (2) coordinating

sort orders in temporary relations.

i
viii

THE DESIGN AND IMPLEMENTATION OF A PEDAGOGICAL

RELATIONAL DATABASE SYSTEM

I INTRODUCTION

BACKGROUND

The relational model of data is a concept that was formalized by

E.F. Codd (Ref 1) n 1970 and has been gradually gaining acceptance in

the research community. Prior to 1970, database implementations were

generally based on one of two models, the hierarchical data model ind

the network data model. An example of the hierarchical model appteos

in Figure 1(a). In this example, parts records consisting of a part

number, name, color, weight and city can have, subordinate to them,

zero or more supplier records consisting of a supplier number, name,

status, city and quantity of the part being supplied. One of the major

drawbacks of this model ofthedatais the inherent redundancy of informa-

tion. Note in the example how the same information for suppliers is

repeated many times throughout the hierarchy. In addition similar

queries about the data cannot necessarily be formulated in a similar

manner. In the example it would be easy to find all suppliers of a

given part by doing a simple lookup of that part, but finding all the

parts supplied by a particular supplier forces a scan of the entire

hierarchy, searching for all occurrences of the particular supplier.

A solution to some of the problems of the hierarchical data mo~el

was found in the network data model. The network model uses sets and

link constructs to indicate relationships among the data. The example

data as it would look in the network model is shown in Figure l(b).

.. L 1

P Nut Red 121 London P27olt Green 17] Pars

S21 Jone*s 110 Paris 1 300 S3 B lake 1301 Par is 200

LSI Smith 20 1London 300 S2Jones 1 ai 0

ISi Smith 120 1London 200

3 crw Blue [17 Rome fP4T Screw Red i 14 Lno

FSi Smith 20 Lonon40

(a) Sample data in hierarchical form (parts superior
to suppliers)

(b) Sample data in network form.

S S# SNAME STATUS CITY. SP Sft P# QTY

Si Smith 20 London SI P1 300

S2 Jones 10 Paris S1 P2 200

S3 Blake 30 Paris SI1 P3 400

______ _____ ______S2 P1 300

IP* PNAME COLOR WEIGHT CITY S2 P2 400

P1 Nut Red 12 London S3 P2 200
P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome
P4 screw IRed 14 London

(c) Sample data in relational form.

Figure 1. Sample data depicted with three models (Ref 4).

Here queries are answered by searching through the paths (indicated by

arrows) until the proper information has been reached. Thus, although

the problems of the hierarchical model no longer prevail, the complexity

of searching through the network causes other problems. One of the big-

gest ones is the lack of data independence. In order to be able to use

the network model, the user must know the structure of the various net-

works he must work with, and write his application programs accordingly.

If there is some need to change the database, either by deleting or by

adding new data or relationships, the user may have to rewrite his pro-

grams to match the new model of the data.

Thus when Codd introduced the relational model, the user community

applauded it for its simplicity, completeness, and ability to provide

excellent data independence. The example data in relational form is

shown in Figure 1(c). The three relations PART, SUPPLIER, and SP

respectively denote a relation of parts records (or tuples), a relation

of supplier records, and a relation of supplier-part records indicating

which suppliers supply which parts in what quantities.

Although university implementations such as PRTV and MacAIMS (Ref

2) are becoming commonplace, and even a few commercial implementations

have appeared, relational systems in general have been criticized be-

cause of their comparative slowness and inefficiency when actually

implemented. Thus, new research was stimulated with the purpose of

eliminating or at least mitigating the effects of those inefficiencies.

Research has concentrated in both the hardware and software design

areas. Hardware improvements are concerned with reducing the time and

space needs of the typically software-laden database management system

which, being large in size and complex in structure, has been overtaxing

3

the host hardware, and overshadowing the host operating system. Most

of the effort in this area has been made with large to very large data-

bases in mind, which is, of course, where the software systems have been

straining the most (Ref 3:414).

In contrast, software research has focused on all facets of rela-

tional database systems, where new algorithms and structures are being

developed to increase efficiency for large as well as small systems.

Some of this research is being done in conjunction with the design of

the database computers, but most of the work is being done in improving

the systems that run on current hardware configurations. The growing

need for simple and efficient database systems to run on the prolifera-

tion of mini-, micro-, and mainframe computers in the business and

government arena will demand that researchers continue to design and

improve systems to run on these architectures.

There is also a great need for database systems in the educational

environment. The vast majority of courses in the database area offer a

basic textbook, "this is how it works in theory", approach, with little,

if any, hands-on experience afforded the future database manager or user.

Although there are many existing database systems which could be used to

teach database manipulation with a fair degree of success, the facilities

for allowing students to experience the role of database administrator

are lacking.

STATEMENT OF PROBLEM

Thus, the purpose of this thesis is to solve two problems. First,

a relational database system is to be designed using the best known

methods as well as any new methods to exact as near possible optimum

4 A

behavior from the system. Second, the database is to be implemented

as a general purpose system but with specific provisions for its use as

a pedagogical tool for teaching database management and manipulation.

SCOPE

The original scope of this thesis was to design and implement a

complete stand-alone database system, including a comprehensive user

interface, optimization procedures, and a complete physical storage

manager. After the design phase was completed, it became apparent that

the implementation phase would exceed the available time. Therefore,

it was decided to leave out modules of the system which dealt with the

actual processing of data in the form of relations. However, due to the

top-down modular design of the system, these modules should be easy to

interface to the existing system once they are designed.

GENERAL APPROACH

The first step consisted of an extensive literature search to

determine what research had already been done in the area of relational

databases. An effort was made to collect information from ail areas

pertaining to database systems: query language design, query evaluation,

storage structures, retrieval algorithms, and human engineering. A

list of all sources accessed is presented in the bibliography.

In order that a direction be established for the rest of the

thesis, the next step involved the selection of a data manipulation and

definition language (DML and DDL). A wide variety of such languages

have been used in past and present implementations, and many others have

been defined in theoretical investigations. However, there are basi-

cally two types of relationally-oriented languages which form the basis

5

for most database languages. These are those based on either a relational

algebra or a relational calculus. As described in Chapter III, considera-

tion of certain criteria resulted in the selection ofa relational algebra

and thus a target DML and DDL was designed with that decision in mind.

The next step integrated the ideas obtained through the literature

search and the decision to use a relational algebra, in an overall system

design. A top-down modular design was used to allow straightforward im-

plementation as well as modification.

Based onthe system design, modules were implemented in top-down

order, with the important lines of implementation done first (Refer to

Scope section). And finally, the completed modules were validated to

ensure their correctness of operation under all inputs, both as stand

alone modules and as an integrated system.

SEQUENCE OF PRESENTATION

The remainder of this thesis is broken into five chapters. Chapter

II describes the selection of the computer upon which to implement the

database system. Machine size and availability and operating system

features are discussed. Chapter III discusses various theoretical

developments in the design of the system. These include the advantages

and disadvantages of relational databases, the selection of the DML and

DDL, and a description of algorithms and heuristics available and

created to eliminate or at least mollify the disadvantages of the

relational systems.

Chapter IV is a description of the major decisions involved in the

development of the software system, highlighting the data structures and

algorithms having significant impact in this implementation. Prominent

6
p

* m

topics in this section include system design and data and control

structures used at the data entry, conceptual and system implementation

levels. Chapter V describes the validation of the system and Chapter VI

presents conclusions and recommendations.

it

-J

I7

II HARDWARE CONSIDERATIONS

This chapter describes the selection of the computer system which

was used as the development tool for implementation of the database sys-

tem. Both machine type and operating systems are discussed.

MACHINE TYPE

Because one of the primary goals of the database system was to

serve in a pedagogical environment, it was necessary to choose a machine

which would be freely available to students and which required little if

any, knowledge of machine architecture and operation. In addition, it

was desired that the system have interactive capabilities to provide

the user with a more flexible and intimate relationship with the data-

base.

Choices for an appropriate machine included a multi-access CDC/

Cyber 6600 and two 8080 based machines --the INTEL 8080 system and the

ALTAIR 8800b system. The large CDC computer was eliminated as a viable

choice because of its already heavy use by the Wright-Patterson community

and its not uncommon habit of going down for extended periods of time.

In addition, the smaller machines could be made available on a full-

time basis for both development of the system and future use by student

users. The decision on which 8080 system to use was essentially

rendered academic by the design of a communications network allowing

complete portability of data and programs between machines. The methods

involved in this scheme are presented in Appendix A.

OPERATING SYSTEM

One of the ways that machine communication was simplified was

through use of a common disk operating system: CP/M (Control Program

for a Microcomputer) (Ref 4), and a common high level operating system: UCSD

(University of California, San Diego) Pascal, Version I.O (Ref 5).

CP/M was chosen because it is an excellent vehicle for implementing

Pascal on a variety of machine architectures. (See Appendix A for more

details). Pascal was chosen as the implementation language for several

reasons. Most important is the block structured design of the language

allowing a smooth transition from a top-down design to the actual code.

Other reasons for choosing Pascal are its high degree of variable

typing and its wealth of control structures. The UCSD version of Pascal

is a widely used implementation among microcomputers, thus providing a

more portable system. Since all machine dependent features are imbedded

in CP/M, any code written with one UCSD Pascal system can be run on any

other. UCSD Pascal was also chosen because, by being designed for micro-

computers, it has a built-in capability for handling large programs with

features such as program segmentation and separately compiled procedures

and virtual memory using segment swapping. Although UCSD Pascal can run

completely in 48K bytes of main memory using the above features, it turns

out that the database system designed here required a minimum of 64K

bytes, due to compilation constraints and execution with large files.

Both random and sequential access to dual drive disks is available in

UCSD Pascal. Thus, the database system may reside on one disk so that

procedures may be swapped in and out of memory, and user data (relations)

may reside on the other disk. By simply switching user disks, data

space becomes virtually unlimited.

9

SUMMARY

The combination of a dedicated microprocessor system and the versi-

tality of the UCSD Pascal operating system and language proved to be a

windfall. Program design was easily modularized; modification and

testing of modules was simple and quick; segmentation, input/output, and

string manipulation were available, easy to learn, and easy to use. Al-

though Pascal exists on the CDC machine, it does so only in a batch

operating system. To be used properly in a pedagogical environment,

a database system must be interactive, allowing the student to create,

execute, and modify commands, and see the results immediately.

10

...

III THEORETICAL DEVELOPMENT

This chapter describes the work that was done prior to initial

system design. Through an extensive literature search an excellent

understanding of the advantages and disadvantages of relational data-

base systems was obtained. By understanding the advantages and dis-

advantages of relational systems, the system design could capatilize

on the advantages while seeking to eliminate the disadvantages. A dis-

cussion of this occurs in the first section of this chapter.

In order to provide some direction to the system design, investi-

gation into a target data manipulation and definition language was

necessary. This enabled direction in the system design, considering

the various methods to make use of the advantages and atleast mollify

the disadvantages of relational systems. By defining the target DML

and DDL ahead of time, a definition of what the system should do was

established and, consequently, the best methods could be used and/or

developed to accomplish that goal. The selection of the DML and DDL

is developed in the second section of this chapter.

The problems of relational systems, and possible solutions to

those problems, have been "bantered back and forth" among experts in

the field ever since Codd introduced the concept. In light of the

target language described in the second section and the hardware con-

siderations of Chapter II, the experts' methods used in this thesis to

solve the problems of relational systems are presented in the third

section of this chapter.

11

ADVANTAGES AND DISADVANTAGES OF RELATIONAL SYSTEMS

This section points out the potential problems and advantages which

should be matters of consideration in the design of a relational model of

data. These include simplicity of the data structure description, gener-

ality of data description and manipulation, flexibility and data indepen-

dence, fourth normal form and redundancy of data structure, data manipu-

lation vs. data management, and user expections (Ref 6).

Simplicity Of Data Structure Description

The aspect of the relational model of information most appealing

to the casual user is its simplicity. A single type of structure, with

a simple and clear organization, suffices for the storage of data, for

the system catalogs defining the (relational) data sets, for inverted

lists and indexes used for more efficient data retrieval, and the data

dictionary/directory. The simple data structure means there is only

one simple access method to understand. Relations are physically inde-

pendent of one another, facilitating relocation, segmentation, and

backup.

Part of the simplicity of the relational model results from the

omission of details relating to the performance of the data management

system and the storage of data. There are three levels of detail in a

database management system (Figure 2). The relational model addresses

mainly the conceptual level, with no specifications on the data entry

level or the storage representation level. While it is certainly

desirable to help the application programmer avoid these representation

details, other system designs have found that goal difficult to achieve

(Ref 6).

12

K

Data Ent USU 1
Level R i I

User/Conceptual Mapping

Conceptu Data Model agement

Representatio C

Level

Figure 2. The three levels of a Database System

Generality of Data Description and Manipulation

The generality of the relational model is another significant

advantage. To start with, the notion of Relational Completeness (Ref

.1) specifies a class of queries which can be answered from the informa-

tion in a given collection of relations. The class is a very general

one; it includes all relations which can be represented with relational

expression using as operands, the database relations. Furthermore,(Ref

7), the effort required to answer a query can frequently be estimated in

advance.

A further advantage of using relations for the basic data struc-

ture is the power of the general operations which may be applied to the

sets of tuples. Since each relation is a set of related items, it is

sensible to have operations which perform the same action on each item

in the set. This is more difficult for the complex data structures

managed by other systems.

13

Flexibility and Data Independence

In addition to simplicity and generality, the relational model

provides more flexibility than available before in other systems. Be-

cause relationships between information in tuples of different relations

(or distinct tuples in the same relation) are indicated implicitly by

identity of key values, adding new relationships or new data to existing

relationships is made easier. The model lends itself to easy extension

with new data manipulation functions, to non-procedural data manipula-

tions, and to the use of set operations.

The separation of relationship information from the information

describing entities is a further advantage for purposes of data security.

We can, for example, place restrictions on the salary relationship which

relates employees to the salary ranges without restricting access to the

relationship between employees and their employers, assignments, and

active projects.

Although indicating relationships among tuples by key values does

indeed give a higher degree of independence of the relations, remember-

ing those implicit relationships may be difficult. For example, if a

network model (not to be confused with the network model of data) has a

relation of edges specified by From and To node identifiers, there are

implicit links from the edge relation to the node relation containing

the nodes of the network. The system catalogs must maintain a record

of these implicit links, which can cause problems in a large system.

Not only must the system remember relationships but it must also

maintain the integrity of the relationships, for example by preventing

the deletion of a tuple containing a key value which is referenced by

another tuple somewhere. These checks may be exceedingly complex and

difficult.

14

Fourth Normal Form and Redundancy of Data Structure

Reducing a relation to Fourth Normal Form (See Ref 2:153-172),

while reducing the complexity of the information structure by separating

information into related classes, introduces a considerable number of

key value references. Instead of being grouped into the record of the

owner, the elements of a repeating group are placed in another relation

with a domain of key references to the owner. Usually there are many

repetitions in these domains and it may be argued that this redundancy

of information wastes storage space. That argument is true only if the

relation is stored in the fully expanded form seen by the user, ignoring

the possibility of redundancy-removing data compression techniques in

the storage of the relations. Such redundancy removal techniques are

advocated in the ADMINS system (Ref 8) to allow efficient use of disk

storage without making the user's view of the data more complex. Expan-

sion to fully redundant form may take place when a page of data is

retrieved from the disks or when it is presented to the user or used

in selection operations.

Data Manipulation vs. Data Management

The relational model of data does not really simplify the problems

in a large database of storing and retrieving ten million records of

200 bytes each. These data management problems remain. A relational

model may help to segment the database into portions and to reduce the

physical linkages between files. But mainly, the relational systems

are a new method of modeling data structures in a general and powerful

way.

15

User Expectations

When a relational model is used for presenting data to a user, then

implemented with some shortcuts such as sorting the relations on the primary

key, the possibility that the user will be able to formulate two similar

commands, one of which will be done instantly (find keys 3-6) and one of

which will take a long time (find colors red-green), will become more

probable. Thus using a more powerful user language than the implementa-

tion really supports is likely to raise expectations beyond capabilities

and result in disappointments. This is especially true with the new

operations such as the set operations and JOIN with which a user may not

be familiar.

The question of user expectations is particularly important in

the context of inquiry processing, since that application has both the

greatest potential and the greatest problems. Clearly, the power of the

relational systems is most evident for complex queries, particularly

those involving data from more than one information file (relation).

Yet, if the system maintains the tuples chained for efficient update of

the relations, context sensitive searches will be slow on all domains.

Correcting this is possible on any particular domain by sorting on that

domain but then searches on other domains will still be slow. Further-

more, if additional operations such as JOIN need to be done on domains

other that the current sort key, then the entire relation must be re-

sorted, a very time-consuming operation. Indexing every relation on

every domain would solve the iccess problem for queries, but then we have

the usual problems with the updating of relations and the creation of new

relations (with their indexes). Hence, with current hardware technology,

systems have usually taken some implementation short-cuts for a relational

model.

16

MLA

SELECTION OF THE DATA MANIPULATION AND DEFINITION LANGUAGE

This section examines the two types of relationally oriented data-

base languages, the relational algebra and the relational calculus.

First a short definition of each language type is presented. Then

the two language types are compared, especially with respect to the

four criteria: ease of learning, ease of use, completeness, and ease

of implementation. Finally, a decision is made as to what type of

language is best for the current application, and a specification based

on this type is described.

Definition of the Algebra and Calculus

Relational Algebra. The representation of the database as a

collection of relations encourages the use of set operations for data

manipulation. The primary purpose of a relational algebra is to pro-

vide a collection of these operations suitable for selecting data from

a relational database. Data selection is viewed as the formation (by

some operation of the algebra) of a new relation from the existing col-

lection of relations. In addition to the set operations such as the

union, intersection, and relative complement, relational operations are

also necessary for flexible manipulation of the data. The relational

operations include projection onto some domains of a relation, selection

of a subset of a relation, join and division of distinct relations (Ref

9: 68, 6: 329).

Relational Calculus. Retrieval languages based on the relational

calculus, a version of propositional calculus which describes expressions

involving information modeled as relations, are another facility made

possible by the use of the relational model. An important aspect of

17

these lanquages is that algorithms which generate the relational expres-

sion can be described using the set and relational operations. Thus any

legal expression represents a relation which can be generated from the

information in the other relations of the database.

Example. As an example, the calculus and algebraic representa-

tions of the simple query, "Find the names of all suppliers who supply

part 43," are given below.

The calculus expression is:

RANGE sp x
GET supplies43(s.sname): 3x(x.s# = s.s# A x.p# = 43)

This expression describes tuples containing supplier names from

the s relation into the workspace relation supplies43. The name x is

a tuple -valued variable used to relate the two portions of the selec-

tion expression. A functionally equivalent set of algrebraic commands

for this query is:

SELECT ALL FROM sp WHERE p# = 43 GIVING sells43
JOIN sells43, s WHERE s# = s# GIVING temp
PROJECT temp OVER sname GIVING supplies43

Algebra vs. Calculus

Ease of Learning. Since the database is being designed for use in

an educational environment, the student's ability to quickly grasp the

fundamentals of the language is very important in that the less time

spent learning and the more time spent using the language will allow

the student to gain the most benefit from the experience. Mathematicians

consider the relational calculus to be more natural for users, because it

allows retrieval of data based on the properties of that data, whereas

algebraic manipulation requires the user to specify an algorithm with the

algebraic operations necessary to perform the retrieval. Unfortunately,

18

the quantifiers and bound variables inherent in the propositional calcu-

lus make the relational calculus uncomfortable and unnatura1 f-- non-

mathematicians (Ref 10:23). Since most students interested in the data-

base field have backgrounds which relate more to the algorithmic approach

to programming rather than the non-procedural approach of the proposition-

al calculus, the relational algebra is superior to the relational calcu-

lus when considering ease of learning.

Ease of Use. It is not always the case that facilities which are

easy to learn are easy to use. However, in this case, the relational

algebra is easier to use, since the population of users will for the

most part be students. The relational algebra works with relations as

a whole, rather than tuple-by-tuple as the calculus does. It is easier

for the student familiar with traditional programming techniques to take

a collection of relations and reduce them in a step-by-step fashion to

a resultant set of relations, than to try to formulate a single predi-

cate expression in the relational calculus to describe the result he or

she wants.

Completeness. Codd (Ref 9) showed that both the relational alge-

bra and the relational calculus are relationally complete languages;

that is, given any finite collection of relations Rl, R2, . .. , Rn in

simple normal form, the expressions of the algebra or calculus permit

definition of any relation definable from Rl, R2, . .. , Rn. From the

user's viewpoint this means any arbitrary simple or complex question

concerning the set of relations in the database can be answered by for-

mulation of a query in either the calculus or algebra. Thus each lan-

guage has a powerful and basic selective power.

19

In most practical environments this power needs to be enhanced with

the introduction of a capability for invoking any of a finite set of

library functions w' ile staying within the algebraic or calculus frame-

work. Codd states that such enhancements readily fit into the calculus

framework; but in the algebraic framework, the functions have to be re-

cast in the form of mappings from relations to relations, and this gives

rise to circumlocutions. However, there is no reason why library func-

tions cannot be applied just as simply in the algebra as in the calculus.

One example is the language SEQUEL (Ref 11) which uses an algebraic

framework and includes such functions as COUNT, SUM, MAX, MIN, etc. Thus

both the algebra and the calculus satisfy the requirement of completeness.

Ease of Implementation. It was noted that the algebra is somewhat

more procedural in comparison with the calculus. For the Data Base

Management System (DBMS) this procedurality can be an advantage in that

implementation, on one level at least, can be reasonably straightforward:

the DMBS can simply perform all the joins, projections, and other opera-

tions as specified in the expression that the user has written. On the

other hand, such an implementation would not be very efficient, and

would very likely result in the user having to expend time and effort in

choosing the most efficient expression of the query -- clearly an undesir-

able state of affairs. However, as will be pointed out in the next sec-

tion, work has been done on optimizing the implementation of algebraic

expressions (Ref 12); and thus this objection may cease to be valid if

sufficiently efficient schemes are developed and implemented (Ref 2:120).

There are basically two reasons why a relational algebra is a

better implementation of an appropriate optimization interface : (1) A

relational algebra treats and manipulates whole relations as single

20

|I

objects whereas the relational calculus type of interface deals with

the relations on a tuple-by-tuple basis. A relational algebra may

therefore be considered to be at a higher level of abstraction than

these other interface systems, and thus offer more scope for high level

optimization. (2) If a relational algebra is conducive to smart opti-

mization, it may provide a practical implementation level for other

query languages. Indeed, Codd (Ref 9) has developed an algorithm for

supporting a relational calculus over a relational algebra (Ref 12:569).

Description of the Relational Algebra Based Design

For the type of system being developed, the above arguments tend

to favor the relational algebra approach. Thus a data manipulation and

definition language was designed based on the relational algebra. The

specification for the language appears in Appendix B.

The data manipulation language includes all the traditional rela-

tional operations as discussed in the definition section. In addition,

statements are provided for insertion, deletion and modification of

the tuples in a relation, the ability to attach stored relations, and

delete, save, copy, sort and rename those relations or relations created

by means of the relational operations. Statements are also provided for

preparing a relation for report generation and for inputting bulk data

into a relation. Note that particular forms of the SELECT statement do

provide for functions in the query (Refer to Completeness subsection).

The data definition language includes commands to define domains

and define relations based on those domains. As part of the definition

of a relation, security controls and integrity constraints are speci-

fied. These are important for protecting an individual's data from

21

iI

being altered or deleted without his or her knowledge. Defined in this

way security controls apply to an entire relation. However, in the

future, it may be necessary (due to Privacy Act or "need to know" con-

straints) to have security on a tuple-by-tuple basis. In this case one

or more attributes of a relation would be declared as security attri-

butes which are never displayed but must be specified when performing

the otherwise forbidden operation on the particular tuple.

All overall security controls may be optionally specified with

the exception of the ID control. This identifies the owner or creator

of the relation and allows the database administrator to recognize these

owners. In addition the owner is allowed to perform any operation on

his or her relations and to change the passwords associated with the

security controls on his or her relations. In essence the ID security

control allows each user to be his own database administrator. This

allows the student to gain experience in database administration as well

as manipulation of the data. The administrator of the entire collection

of databases would typically be the instructor or a high level manager.

He or she would be allowed to access, change, or delete any relation in

anyone's database in addition to performing general maintenance of the

system, such as changing the storage algorithms to improve efficiency.

Summary

Most database languages for relational systems fall into a rela-

tional calculus or a relational algebra framework. It was shown that in

light of the criteria -- ease of learning, ease of use, completeness,

and ease of implementation -- and in light of the goal of a pedagogical

system, the relational algebra was superior. This was then used as a

22

basis for the design of the database manipulation and definition language

appearing in Appendix B.

SOLUTIONS TO THE PROBLEMS OF RELATIONAL DATABASES

Determining methods to eliminate or reduce the problems of rela-

tional systems has occupied many researchers' time for nearly a decade.

Work has progressed slowly in this area because the relational model was

slow to gain acceptance as a viable alternative to the more firmly en-

trenched hierarchical and network models. This section presents the

methods used in this thesis to alleviate the problems described in the

first section of this chapter, especially the problem of inefficiency.

Integrity

Integrity deals with the prevention of semantic errors made by

users due to their carelessness or lack of knowledge. The integrity

problems mentioned in the Flexibility subsection have not been entirely

solved due to the limited scope of this thesis. However, in an excellent

paper Eswaran and Chamberlin (Ref 13) have laid out the functional speci-

fications of a subsystem for database integrity. All or parts of this

subsystem could be easily added to an already existing modular database

system.

This subsystem permits users to make assertions which define the

"correctness" of the database, and to specify actions to be taken when

the assertions are not satisfied. There are both static and dynamic

integrity assertions. Static assertions are constraints which must

hold true for the life of the data object. For example, part numbers

may be required to be non-negative integers, and any insertion or mod-

ification which would create a negative part number would be rejected.

23

Dynamic integrity assertions may be added and dropped from time to

time, and may describe not only the nature of a data object but also its

relationship to other objects. This is the type of assertion which would

be needed to solve the problem with the example of the network model,

where a relation of edges and a relation of nodes have implicit rela-

tionships between the tuples. This thesis has only developed the struc-

ture for using static integrity assertions in the definition of domains

and relations (See Appendix B).

Redundancy of Data and Efficiency at the Storage Representation Level

Data compression techniques are one way to remove redundancy of

data. Another, more powerful method, involves combining the indexes

of more than one relation into a common structure. In the User Expec-

tations subsection, the problems of efficiency of update vs. efficiency

of retrieval were pointed out. Some implementations have tried to solve

this problem by creating two access structures -- a link structure

among relations to provide efficient retrieval, and an image structure

for individual relations to provide efficient update. This method has

several drawbacks. One is that it really doesn't help the data redun-

dancy problem since many of the keys have to exist in both access struc-

tures. In addition, the system must support two different sets of access

procedures.

In a recent paper (Ref 15), Theo Haerder has developed a method

for combining the two structures into a generalized access path structure.

In order to explain Haerder's structure, some background material on

images and links will be presented, and then a method for combining

these two structures and its generalization will be described.

24

Definitions. An access path giving value ordering and associa-

tive access by one or more attributes to one relation is called an

"image". For example, using the parts-supplier model introduced in

Chapter I, an image on the CITY attribute of the PART relation would

provide access to tuples based on the specification of a value for CITY.

A value of "LONDON" would cause the access method to return the values

"P1" and "P4", or appropriate pointers to those two tuples.

Definition -- Let R be a relation with attributes Al, . .. , An-

An image Ii of the attribute Ai of R, i E 1, . .. , n1, is a mapping

from values in A1 to those tuples in R which have that value for the

ith attribute. Additionally, these sets of tuples qualified by values

of Ai are ordered according to the sorted sequence of values of Ai.

The generalization of the term "image" to compound attributes is straight-

forward.

Access paths relating tuples of one relation to tuples of another

relation are called binary links. For example, a binary link between

the tuples of the PART and SP relations would provide an access path

from the tuples of PART to the tuples of SP where the P# attributes

were the same. Thus, a value of P3 from the PART relation would cause

the access method to return the value (Sl,P3),or an appropriate pointer

to this tuple. Haerder uses special binary links according to the

following definition.

25

Definition -- Let R be a relation with attributes A1, . .. , An,
S be a relation with attributes B , Bm; F(Ai) = F(Bn) for the

domains F(Ai), F(B {i, . .. , ni, k {1, . ,m}; Ai be a candi-

date key of R. The link between R and S with regard to Ai, Bk is defined

as the set L(R(Ai), S(Bk)) = {(r,s)/rER, s E S, prAi(r) = prBk(s)},

where prAi(r) and PrBk(s) are the projections to the components of r

and s which correspond to attributes Ai and Bk, respectively. The term

"link" may be generalized for compound attributes similarly.

The reference from the access path structure to the actual tuple

is usually done by means of TID's (Tuple Identifiers) or physical

pointers. An appropriate implementation technique for TID's is a

concatenation of a page number along with a byte offset from the

bottom of that page. This combines the speed of a byte address pointer

with the flexibility of indirection. The page number allocated in a

logical address space allows an indirect reference to the actual physical

storage block. The offset denotes a special slot which contains the byte

location of the referenced tuple in the page. Hence, the TID concept

offers two different kinds of indirection -- at the page level and within

the page.

Implementation Technique for Images. An image is conveniently im-

plemented and maintained through the use of a multipage index structure

which contains pointers to the tuples themselves. The pages of a given

index can be organized into a balanced hierarchic structure using the

concept of B*-trees (pronounced B-star trees) (Ref 16,17). For non-

leaf nodes, an entry consists of a key value and a pointer pair. The

key itself can consist of values of single or compound attributes and

can be represented in encoded form (Ref 18) allowing a particular sort

26

order on each attribute value in case of compound attributes. The pointer

addresses another nonleaf page or a leaf page of the same structure.

For the leaf nodes an entry is a combination of key values, along

with a variable length ascending list of TID's for tuples having exactly

those key values. In order t6 identify the length of the TID list an

additional length information field is kept with each stored key. In

addition, the leaf pages are chained in a doubly linked list, so that

sequential access can be supported from leaf to leaf.

If the total storage space for the TID lists of a particular key

exceeds one leaf page, overflow pages can be introduced optionally

which can hold the overflowing part of the lists. These overflow pages

are chained with the leaf pages only, and they are not pointed to by

the nonleaf pages, in order to reduce the increase of the height of the

B*-tree.

If a mechanism is provided for enforcing the uniqueness of keys,

this structure can also be used to implement an access path for primary

keys. The "image" of the relation is represented by the particular

value ordering when accessing the leaves of the B*-tree from left to

right (in post order). When a relation is created, one image of the

relation may be designated as the "clustering image," with the result

that tuples near each other according to a chosen order relation will

be stored physically near by.

Figure 3 shows schematically an image on the attribute CITY of

the PART relation. Assume that only the first four of many tuples in

the PART relation are given in Figure 1(c). Key values; e.g., "P?',

are used as tuple identifiers (TID's) and their use as such is indi-

cated by enclosing them in parenthesis. The image as shown on the

attribute CITY is denoted by I(PART(CITY)).

27

..| Il[. im...m(IN F

LONION 2((Pi)I (P2) NEWYORK nj "" I (P2)

NEXT -PRIOR optionaT pointer
Nleaf pge to overflow page

Figure 3. Image implementation for I(PART(CITY)).

Implementation Technique for Links. A binary link connects tuples

in one or two relations on matching attribute values. Usually, it is

implemented by using chaining techniques with TID's or physical pointers

(storage addresses). The TID chaining gives one level of indirection

compared to physical chaining of addresses.

For example, links are maintained in the Relational Storage

System by storing the TID's of the NEXT, PRIOR, and OWNER tuples in the

prefix of the child tuples and by storing at least the TID of the first

child tuple in the parent tuple according to Figure 4. In this example

one tuple of the OWNER relation PART(P#, . . .) is linked to 3 tuples

of the MEMBER relation SP(S#,P#,QTY). The binary link is denoted by

L(PART(P#),SP(P#)).

28

1

TID NEXT PRIOR OWNER

(P2)IP2I GREN 17owner(P2) (S1,P2) " " P2 GREEN 17 PARIS tuple

(Sl,2) W (P2jS1 P2 1200first (member

tupie

second
(S2,P2 -(3,P2) 1(S1,P2) (P2) S2TPT2 400 member

tuple

last
") (S2,P2) (P2) S3 P2 1 200 member

tuple

Figure 4. Link implementation of L(PART(P#),SP(P#)');
link occurrence for domain value P2.

Implementation Technique for a Combined Access Path Structure. A

binary link provides a direct path from single tuples (parents) in one

relation to sequences of tuples (children) in another relation. Usually

it is argued that the main advantage of a link is the direct access to

a tuple of either relation coupled by a binary link, while use of an

image may involve a complete traversal of a B*-tree structure consisting

of several page accesses in order to find the child or parent tuple. The

relative gain of a link over an image is even enhanced when the child

tuples have been clustered on the same page as the parent tuple. In

this case no additional page has to be touched using the link, while a

couple of pages may be accessed in a large index.

It should be pointed out the relationships between tuples of one

or different relations are expressed explicitly by attribute values

in the relational model. This key property allows combined images on

29

the same domain serving also as link structures. Therefore, the advan-

tage of image and link access can be combined using a different kind of

organization of the leaf nodes of the B*-tree. The nonleaf nodes look

exactly as in the single image implementation. In the leaf nodes,

separate TID lists for both ielations together with the related length

information fields are stored for each key. The lists for the parent

relation contain only one TID entry, while each variable length list

for the child relation contains the sequence of TID's for the children

related to a particular parent tuple. The order in these lists can be

exactly the same as in the binary link. In Figure 5 the discussed

examples for the SP and PART relations are treated in. a unified way.

The various attribute values for P# in SP and PART are the keys in the

images and the matching P#'s also establish the link occurrences between

the two relations.

leaf page TID for PART

...P2 1 3 (P2) (S1,P2) (S2,P2:(S3,P2)-

• -Pk.,TID's for SP
NEXT PRIOR optional pointer

leaf page to overflow page

Figure 5. Combined implementation of link L(PART(P#),SP(P#)), and
the images I(PART(P#)) and I(SP(P#)).

30

With this access path structure the striking disadvantage of

separate images can be avoided, that is, the traversal of an additional

B*-tree structure, when the child tuples are to be accessed after the

parent tuple is located. In either case it must be assumed that the

owner tuple is found via an image access I(PART(P#)). If the leaf page

containing the required key (candidate key) for the tuple of the OWNER

relation is fixed in core, then the subsequent navigational accesses

to the tuples of the MEMBER relation are at least as fast as the

accesses via the binary link. In case of clustering, even more tuples

can be stored in a particular page, because the storage space of three

TID's per tuple and link is saved. On the other hand, the access to

the linked tuples in determined sequence enforced by the embedded TID

chain is not necessary. Furthermore, having the combined access path

structure, there is no need to fetch the tuples of a binary link sequen-

tially; e.g., if it happens that the tuples are stored on different

devices, seeks and rotational delays may be overlapped.

Generalization of the Combined Access Path Structure. The com-

bined access path structure replaces different access path types like

image and binary link by joining the various characteristics of these
access paths in one unified structure. A considerable advantage is

gained, therefore, with regard to implementation complexity. Instead

of supporting specialized modules for each of the access path types,

only one unified set of modules working on this combined structure is

necessary. The proposed approach reduces the extent of implementing

various operations on access paths.

The proposed concept of the combined access path structure can be

extended in the following way leading to the "generalized access path

31

structure": All variable length TID lists belonging to the various

attributes in different relations which are all defined on the same

domain are stored with their related domain value (key value). This

concept is not restricted to a single domain with single attributes

defined on it. It can be applied to given sequences of attributes

(compound attributes) corresponding to one particular domain sequence.

The format of the nonleaf pages is the same as for the image and

combined access path. All kinds of optimizations; e.g., key compres-

sion, which are available for single access path implementation can

be applied to them. (See especially "Prefix B-Trees" by Bayer and

Unterauer (Ref 18).) The leaf pages contain for each key up to m

variable length TID lists together with m length information fields.

If an actual domain value is not defined for attribute Ai, then the

corresponding TID list does not exist and the corresponding length

information field indicates this fact by having a zero entry. At

least one TID list must exist for a specified domain value; otherwise

the domain value is currently not used in any tuple of the related

relations and doesn't appear as a node in the access path.

The implementation of the generalized access path structure is

shown in Figure 6. The particular example is chosen for four relations

related by domain PART NUMBER. Let us assume that the relation RI is

PART with P# being the primary key. R2 may be considered as the SP

relation with the inverted attribute P#. R3 and R4 are introduced as

the MANAGER and EQUIPMENT relations:

MGR(M#,P#,JCODE,...)
EQUIP(INO,P#,TYPE,...).

32

leaf page TID for R1

Hil I P21113114 I(P2) I(S,P2) IkS2,P2) I(S3,P2) I
NEXT P IOR length infor- TID's for R2

leaf page mation fields

(B)6 (1(17)1 50)1(18) 1 I
TID for TID's for R4 optional pointe

R3 to overflow page

Figure 6. Implementation of the generalized access path;
example for four relations on domain P#.

The attributes P# of the relations MGR and EQUIP are also inverted.

P# in relation MGR is specified as a candidate key, additionally. The

graphical representation of this example describing all existing binary

links in it is shown in Figure 7.

PART L2MGR

L3 .IL6

SP EQUIP

Figure 7. All existing binary links based on P#.

33
t~.

Here the same attribute name P# is chosen for convenience. In

principle each relation can have a different attribute name defined on

the same domain; e.g., PART NUMBER. In the case of domains with numeric

values each attribute can carry a different unit of the same or different

unit types. By accessing the index the appropriate conversion rule must

be applied to map the particular attribute value to the corresponding

domain value.

Each node in the leaf page; e.g., the particular node with domain

value "P2" in Figure 6, contains four variable length lists with four

length information fields describing the tuples of the four relations

with P# = "P2". If a particular attribute is specified as a candidate

key, the corresponding list length of the TID list is restricted to 1,

shown in the example for domain value "P2" for R1 and "M6" for R3. All

other attributes are not restricted at all.

Summary. In summary a generalized access path structure combines

the advantages of link and image structures in retrieval and update

operations, and is competitive from a performance point of view. In

addition, the various kinds of concievable pointers such as FIRST,

NEXT, PRIOR, OWNER, etc., can be represented by their relative position

in the variable length TID list. As a result a substantial saving of

storage space is gained with this structure. Finally, this unified

approach to access path implementation should reduce the complexity of

the system implementation.

Efficiency at the Conceptual Level

Relational database systems provide the user with a tabular view

of the data, a view that is independent of any machine or implementation.

34

The user need know nothing of the implementation in formulating his

query. Unfortunately, because a user is deliberately made unaware of

the actual data storage mechanism, he may write queries which, though

consistent with his relational view, have a very low efficiency factor.

It is essential that the burden of efficiency, since effectively

removed from the user, be assumed by the interface to the database.

The previous section presented methods for removing redundancy and

improving efficiency at the storage representation level. In addition,

very significant optimization can be done at higher levels of interpre-

tation where the global structure of a user query is known. Both Smith

and Chang (Ref 12) and Hall (Ref 14) have designed some algorithms and

heuristics to use in optimizing single expressions for a relational

algebra interface.

The basic organization of the optimizer is shown in Figure 8.

Syntax analysis entails checking the input query for proper form, ensuring

that security constraints are not being violated, and creating an operator

tree. This tree is then passed to the tree transformer which has access

to a set of correctness-preserving algebraic transformations (Tables I-

IV), and also to a set of rules which determine when the application of

these transformations will increase efficiency.

A I~ Coordina~ting
rfyats A:ee Operator tResnse

AnlyisTr ore Con tru t Z mhinertr

A ! tlc ton A: Operator tr ee

C: Set of cooperating concurrent tasks

Figure 8. The basic organization of the query optimizer.

35

The transformer optimizes the tree and passes it along to a mech-

anism which constructs an implementation of each operator as a task.

This operator has access to a set of basic implementation procedures

(Appendix C). The constructor creates tasks from these procedures in

such a way that the performance of the whole tree of cooperating tasks

is optimized. This is achieved by distributing and analyzing the

effects on sort order of possible implementation decisions, and then

creating tasks sc as to coordinate sort order throughout the task tree.

Smith and Chang provide a two pass procedure to implement this process:

the first pass up and second pass down the tree.

On the upward pass each branch is labeled with the set of sort

orders which can be efficiently generated from lower operations. These

are called preferred sort orders (pso). Then a pass is made down the

tree. As one goes down, the sort orders which can be most efficiently

supplied from below to a given operator node are already known, and

thus the sort order this node must pass up can also be determined. So

a pso is chosen from below while simultaneously constructing the appro-

priate implementation of the operator. Tuples will be re-sorted at a

node only if no pso from below can be effectively utilized. The UP-

rules for the upward pass are presented in Table V, and the DOWN-rules

for the downward pass are presented in Table VI.

The final step is to execute the procedures. Although impossible

with the configuration assumed for this thesis, the most advantageous

implementation would run the procedures on a multiprocessing machine in

order to exploit the concurrency among tasks, generated by the above pro-

cedures. These procedures are described in more detail in Chapter IV.

36

.......

SUMMARY

Relational systems have significant advantages over other systems

including simplicity, generality and flexibility. However, a large and

overpowering disadvantage in any simple implementation of a relational

system is its lack of efficiency. By choosing a relational algebra

framework for the DML and DDL, the pedagogical needs of the system are

met, as well as opening up the way for implementation of the high level

optimization techniques discussed in the last section. The efficiency

problem can also be abated at a low level with the use of the generalized

access path structure also described in the last section. The methods

used to Implement these procedures are the topics of the next chapter.

37

- i

Table I. Idempotency Laws of Relational Algebra

Expression Reduces To

1. A uA A

2. A nA A

3. A -A 0

If A cB then

4. A uB B

S. A nB A

6. A -B0

Table II. Simplification Laws of Boolean Algebra

Expression Reduces To

1. aAa a

2. ava a

3. a v(a vb) a vb

4. a A(a vb) a

38

S--

4o)

41.) CD Go co

U- U

F, -

0 U..

0 co a)L..4
U- ca ca-o5

x c -cc cc -cc _

Lul.

39-

cc.) 4fl m~E 4
EU 410.E C

41 = 1 5

0 .0 C 4- M0. 4.)

4-3 4E U (A 4
U ~ 4-) * S-) 04 . ~

LI.) Eu 0 4- 4 0 4u
4.) .1 Cu 0 EU 4.) +.)

EU Ln. r_ -sEn C 4
to ".C - Z! 41 go4.

4- IA to1En E
*4- EU bd -0 am to

EU - 1 4- c
S.s 105 E (D 39

C 4- 5 C 44. to 41 e

41

c I

0 0

4JJ 5
to. n. CL

4-

CC

EU CL-5 -

C 1- 40

Table V. Rules for coordinating sort order and implementing operators
-UP-rules (Ref 12).

Notloim:
daL is either the domain which Rt is sorted on (if Rt is sorted) or

n (ifR is not sorted).
-ya Is the preferred sorn order (pso) set for Relation R. N.B. ina

may also include n.
it, where R is a stored relation, is the set of domains in R for

which directories (indices) exist.
*is the empty set.

KEY(R) is the set of primary key domains in Rt.
UNARY(R) is true if R consists of a single domain.

LEA NOCE _ _ _ I NTERNAL NOE

OPA NIN LEAF PU -

____LABEL OLITPUT LABEL 'LABEL OUTPUT LABEL

PE41 do i WOOE or KEY(R)%,A) then (do) oi- 4 To af X40%~ 4"ee Ave. of" A

RIEI do Ida) Yo to

i LR4ARY(R) and (04I gor Duds) then (ds) if JNARY(R) and DOTS, thea Tg
R[C-O]S do do else If UNARY(S) and (Cfle or Cmid%) then (do) To To elkf' It UARY($) cad Cf-o 116m To

4". (CD) dee (C.OI

RECOOIS If C-do and Oe'dj skew Id3) If C4to and WIT, then Ts
do do elso if Cude ad 0-ds then (dn) To TS *lI" If CE~te and 041', then to

(S .@ies* (dadg) W"le TRUTS

pus do do If do-do~n then (do) TO To af (T.n-tv)-(n)'O glee (TonY,)-(n)
c~~~teW (n) oe a

an$S do do (dadS) To IN I (yo*-to)-(fl)4t then (Vpny5)-In)

R-S do do af dolds end lo-0 then (p)Y1 T k Ti f (Tmn-t,)-(n0# tiesa (Tonyso-n)
oi- (do) @lI" To

PUS d. do (dobdg) TitIt a -Tou

jjMAl do do If dout the, do @too z a TT if v"0hl6i ohe. (yolo else .1

LEAF/INTERNAL NODE I NTERNAL/L.EAF NODE

PEA I(INPUT t PUT
O1A14LABEL OUTPUT LABEL LABEL OUTPUT LABEL

if L#IARY(R) and MISg then T
REC-OJS do T ta I"I UNARY(S) aud (C41, or To do SYMMETRICAL

_________ Cudi) then (da) else(CO

RICSO]S af C-do end Olyg then Irs
doy T o if c,'dq and 041', then (do) To do SYMM4ETRICAL

(0As) e. (Q.uTs

RUS do a O d.0, nd diy@tse (d.. To do SYMMETRICAL
@I" (M)

Rn do Ts I dooln ead diEty ohem (do) To do SYMMETRICAL
else (divuts

R-9 do TS (di) Todo if doom and dolEro then (dii

RNS do Tas (dolula Ta do SYMMETRICALI (.45do 78 i 00.1 endo lo A V#ad. I aj1Tl0$ Othe W aseA

41 =IS rits L3 e~ , .'ALIIIlP4A~~

* ii-

• .], - -4..'
-s le I -

a ,1tIII ____ ____ I 11I :
J

II's

4J f.__ ___ _

cm 4 15 . :&

iI , ',I 11,

b W;

U. . , . - "- ' .+ + , .. j 5_ f ,,

4.1-i 1+ : "'

id

00 1

Lo 5 "' ' "" ,. ,1

+ , , i Zq I

owl1
""'11Iv u+i ,,"!+.,t ' -

I •I.I
b

.0 ; ___ ____

do

42 EI P... IS !,-. t.It r u,.O tW

IV SYSTEM DEVELOPMENT

This chapter details the software development of the database

management system. Discussion covers the initial system design and

anticipated modifications thereto, implementation techniques at the

data entry level and conceptual levels, and special utilization of

UCSD Pascal in the overall system structure.

SYSTEM DESIGN

Initial Development

Once it was decided to use a relational algebra based DML and

DDL, much of the system design followed in a straightforward fashion.

Capabilities had to be provided at both the data entry level for in-

putting and verifying commands, and at the conceptual level for inter-

pretation and global optimization of specific queries. A major break-

down of the system modules is shown in Figure 9. An executive module

controls access to all other parts of the system, procedures being

initiated from and returning control to it. The exec operates in one

of two modes: normal mode under user control, and special mode under

control of the database manager (DBM). Special mode is entered by

Inputting a unique identification password as part of the logon system.

Special mode causes the exec and its modules to ignore security restric-

tions on all relations, thus allowing the DBM to control and maintain

the entire database. In addition, priviledged operations such as an

initialization command may be used only by the DBM acting in a special

mode.

43
, i

LJ -J

Im-

LC 0C 0ii
cj- I- I

L&J-4 LiI

0A- 0L
I-zI - L

>. 1-q

LLI m

(A E
ILRi WL

V))
060

W cn E
LLJ La,

CC

44LL c

The DDL processor creates and maintains the domain and relation

definitions which exist in the database. These definitions are kept in

main memory for quick access by the other modules, and are stored on a

disk file when the user quits the system. Since secondary storpge con-

sists of removable diskettes, each user may maintain a sepal te s ,

with possibly different relations and domains stored on them. The

definitions for these are read in during setup time, thereby allowing

each user to act as database manager for his or her own database. This

feature will also be useful in segmenting unrelated or very large data-

bases. For instance, information about classes, students, and instruct-

ors may make up one database, while information about staff and admini-

strative personnel may make up another.

The DML processor controls the execution of all other commands.

Four modules, ATTACH, INVENTORY, EDIT, and RETRIEVE comprise the major

breakdown of this processor. The purpose of ATTACH is to make relations

accessible to the user. This includes setting up any necessary or

desired access paths for those relations and checking security rights

for later manipulation of those relations. INVENTORY provides the user

with a list of the domains and relations he has defined or attached

during the current execution of the system.

The EDIT module's function is to execute a variety of utility

commands available to the user. These include the ability to insert,

delete, and modify tuples in relations, to copy the contents of one

relation to another, to select a subset of a relation using any of

several functions, renaming relations, sorting relations, and changing

the security passwords on relations.

45

The RETRIEVE module handles the creation and execution of rela-

tional queries. Queries are treated by the system as command files

which may be changed, stored or retrieved from storage, or executed.

Modules exist in RETRIEVE to perform these functions and in addition

RETRIEVE also processes commands to display the contents of relations.

Further breakdown of the RETRIEVE modules will be described in later

sections of this chapter.

Modules also exist to properly shut down the system. New domain

and relation definitions must be stored on the disk as well as any

relations not already saved or permanently changed.

Separate from all of the above modules are those that handle data

at the storage representation level. This is a natural division in a

relational database system because the relational view of data assumes

nothing about how it is stored. Thus, when better storage models are

devised or new hardware is introduced, only these modules need be

changed.

Future Modifications

Due to the limited scope of the thesis, Figure 9 shows several

modules which have not yet been implemented. Most notably the modules

which comprise the storage representation level of operation exist only

in theory (See Chapter III). Thus, in order to have some basis for

running and testing the other modules of the system, a temporary

structure containing the domain and relation definitions was created.

The structures used are simple linked lists, one sorted by domain name

and the other sorted by relation name.

46

Since one of the primary advantages of relational systems is its

simplicity of data structure description, there is no need to employ

different data structures at the conceptual level. Thus when an appro-

priate set of low-level access procedures are implemented the temporary

linked list structures employed above will give way to the same relational

model. For each user database there will exist a relation of domain defi-

nitions and a relation of relation definitions, and the same low-level

procedures which access the database relations may be used to access

these "definition" relations.

Lacking a set of low-level procedures, several other modules as

shown in Figure 9 were not implemented. Most of these modules have func-

tions which have no applicability if only the definitions of relations

exist; i.e., no actual data in the relations. These modules are straight-

forward in their function and should pose no problem in their future

design and implementation. (More detail on the function of these modules

can be found in the user's guide, Appendix B).

IMPLEMENTATION TECHNIQUES AT THE DATA ENTRY LEVEL

Computer systems in general are of little use if an appropriate

interface to the human user does not exist. Such an interface must be

in harmony with both user skills and task requirements. This is espec-

ially true in the present case, for this database system is being speci-

fically designed for pedagogical uses in the training of students.

Some of these considerations went into the selection of the rela-

tional algebra as the basis for the interface DML and DDL. In addition,

consideration of actual machine/user interaction was mandatory. Solutions

to two problems were attempted: the handling of over two dozen user com-

mands and the problem of input error detection and/or correction.

47

...... -----

The Abundance of Commands

Due to the wide abundance of commands which must be available to

the user in a comprehensive database system, a multi-level command

system was designed. The hierarchy of commands is shown in Figure 10.

At each nonterminal level the user is given a prompt line with a list

of commands from which to choose. By entering one character (usually

the first character of the command) the user either descends a level

into the hierarchy where more choices are available, causes invocation

of a procedure or procedures, or quits the current level and returns to

the previous level. For example, if a user wishes to change a previously

created command file he will type R at the SYSTEM level and a new command

line at the RETRIEVE level is displayed. Then by selecting the GET

option by typing G the user is able to get his command file from disk

into a workfile in memory. Then by typing E (still at the RETRIEVE

level) the first 20 or fewer lines of his file is displayed and a new

command line at the EDITCOM level is displayed. After using the options

at this level to modify his file, he types Q to return to the RETRIEVE

level. Now he may save the new version of his file, execute it, etc.,

or he may simply return to the SYSTEM level by typing Q once again.

The number of options available at each level was limited to be-

tween four and six (not counting the Q(uit) option). Fewer options at

each level would have meant more levels. While the system would know

how deep it was, the user would soon lose track of what levels he came

from. On the other hand, if there were more options at each level, the

user would get lost among the various options, especially if many com-

mands started with the same character.

48

I--

uco

(A~

CD1
LU'

CD w

LA-J

49

Another method of reducing complexity was used in the selection of

which commands to make available at each level. Grouping related commands

under one option reduces the need to jump from one level to another. For

example, after X(ecuting) a command file the user can immediately D(isplay)

the result without quitting the RETRIEVE level and perhaps descending

anuther branch at the SYSTEM level. Also, the more commonly used commands

which would more likely be called are at a higher level. For example, the

options under EDIT are divided into two sets. Those anticipated to be used

most often are at the first level of EDIT and any others are at the second

level, obtained by typing "?1.

Error Detection/Correction

Errors at the Data Entry Level are usually one of two types: (1)

the user enters a conmand and either misspells it, includes an invalid

parameter, or specifies an illegal operation; or (2) the user enters a

valid command he did not mean to. The first type of error is usually

termed a syntax error. These errors are easily detected, but depending

on the sophistication of the system, perhaps not as easily corrected.

Many times the error can simply be ignored. For example, when an illegal

option is entered after a command line is displayed, the command line is

simply redisplayed with no action taking place. In other cases the error

must be pointed out and either the user allowed to correct his mistake on

the spot or as in the case of a command file, ignore the command in which

the error occurred and continue to process other commands. In either

case, the user should be allowed to correct his mistake or to discontinue

execution of the command or command file.

50

The second type of error is not so easily detected. However, cer-

tain precautions can be taken by the system to allow the user to undo

these types of mistakes. For instance, consider a user in the RETRIEVE

module where he has created or changed a command file. He executes the

file and now wishes to leave RETRIEVE and exit the system. However,

through oversight he has not saved his new command file on secondary

storage -- an easy error, especially if execution took a long time. The

system, though, will not allow him to leave the RETRIEVE module without

answering a question to throwaway his current workfile with a "Y". This

backup method is applied in other instances where it is appropriate.

Some user actions, such as defining a relation which was not

wanted or copying one relation to another by mistake may be rectified

by simply deleting the relation definition and deleting the copied

tuples. However, some operations such as a multiple tuple modification

may be impossible or extremely time consuming to back out of if the user

does not have a copy of the original relation. Thus all relations

created or modified do not take their predecessor's place until the user

asks that they be specifically saved as such. Thus, one method of pro-

viding permanent backup is to modify the relation, rename it and save

it. When the user is sure he no longer needs the original relation it

can then be deleted.

IMPLEMENTATION TECHNIQUES AT THE CONCEPTUAL LEVEL

The main thrust of this thesis occurs here in the design and imple-

mentation of new techniques at the conceptual level. Only recently has

work begun in the optimization of performance at the conceptual level.

(See the last section of Chapter 3). Since, with a relational view,

i51

., - < - I I I " r

a user query is expressed at such a high level of abstraction, the system

itself has the power to make implementation decisions. The presumption

is that a "smart" interface can perform better than a nontechnical user

who is overwhelmed by a mass of detail. On the other hand, much work

remains to be done on how to design the conceptual level interface to

efficiently implement a query, let alone provide it with enough intel-

ligence to out-perform a confused or less than proficient user.

The design chosen for this implementation is pictured in Figure

11. This design is an expansion of the basic query optimizer as shown

in Figure 8, where TREE corresponds to Syntax Analysis, OPTIMIZE to Tree

Transformer, and RUN to Coordinating Operator Constructor. The next

four sections describe the algorithms and data structures used in each

of the submodules of EXECUTE.

The TREE Module

The TREE module receives as input a pointer to a command file and

returns as output a pointer to a network of shared trees. The following

algorithm is used for performing this transformation:

For each command in the command file do:
(1) If all elements of the command are present then continue

else perform error subroutine.
(2) If all relations to be operated on have been defined and

attached and the result relation name is not already in use
then continue else perform error subroutine

(3) Create the node and link it to any nodes it uses as operands.

Error subroutine:
I i~ Print error message.

Mark command file to indicate error found.
(3) If user wishes to continue having the syntax of his file

checked then ignore this command and continue with next one
else quit TREE procedure.

52

CC-

4- fA

La = -. ,A U

La.

53 =

The data structure used for each node is a record with the

following fields:

LEVNUM -- (integer) number of nodes which point to this node.

NODNUM -- (integer) copy of LEVNUM but used later as a counter.

LEFTPTR -- (pointer to node) points to the node which is the left
operand or is nil if the left operand is a stored
relation.

RIGHTPTR --same as LEFTPTR but refers to right not left.

NEXTNODE -- (pointer to node) used initially to link all nodes
together and later to link the root nodes together.

DOWNPTR -- (pointer to node) points to the next node in a pre-
order traversal of the tree; used only in RUN.

UPPTR -- same as DOWNPTR but refers to previous not next node.

LEFTNAM -- (string) contains the name of the node pointed to by
LEFTPTR or the name of the stored relation if LEFTPTR
nil.

RIGHTNAM -- same as LEFTNAM but refers to RIGHTPTR not LEFTPTR.

(Note: if the node is a unary operator such as SELECT then
LEFTNAM and/or LEFTPTR are always used.)

RESULTNAM -- (string) the name of this node.

OPERATOR -- (string) the function of this node; e.g., UNION, etc.

PSORESULT -- (pointer to list) points to a list of the preferred
sort orders for this node; used only in RUN module.

FIELDRESULT -- (pointer to list) points to a list of the attributes
of the relation produced by this node's operation.

VARSi -- (pointer to list) points to a list containing a boolean
expression in postfix notation if this is a SELECT node,
to the divide attribute if this is a DIVIDE node, to the
join attribute from the left node if this is a JOIN node,
to a list of project attributes if this is a PROJECT node,
or nil otherwise.

VARS2 -- (pointer to list) points to the join attribute from the
right node if this is a JOIN node, or nil otherwise.

54

b _ "~

HDFLAG -- (boolean) TRUE if this node is a root node of some tree,
FALSE otherwise.

STFLAG -- (boolean) TRUE if this node is pointed to by more than
one other node, FALSE otherwise.

It is at this point that the differences between the basic query

optimizer and the methods used in this thesis become evident. Previous

attempts it optimization have considered only single expressions. That

is the user formulates a single query and expects a single relation as

the result. This thesis has expanded this viewpoint to include multiple

queries for which the user expects several relations as the result. Thus

the opportunity exists for simultaneous optimization of a set of queries.

These opportunities occur in two areas: in the exploitation of shared

subtrees not only within a query but also among different queries, and

in the execution order of the various queries. These ideas are embodied

in the module SPLITUP.

The SPLITUP Module

The SPLITUP module receives as input the pointer to the network of

shared trees provided by TREE, and produces as output an order optimized

forest of separate trees in which all shared subtrees have been removed.

The algorithm for performing this transformation is as follows:

(1) FINDHEADS -- all root nodes in the network are found and linked
together using the NEXTNODE field.

(2) While there are root nodes not yet considered by this step do:
(2.1) LONGTREE -- determine which of the remaining trees has

the most number of shared subtrees.
(2.2) Place the root node for this tree at the beginning of

the chain of root nodes.
(2.3) Continue with remaining nodes.

(3) For each tree, FIXFIELD -- set up the attribute list to be
produced by each node in this tree using FIELDRESULT to point
to it.

55

(4) Perform various error checks where applicable:
(4.1) Ensure relations are union compatible.
(4.2) Ensure that whenever attributes are referenced, such as

in a SELECT predicate, or a PROJECT list, that each
corresponds to some attribute in either the FIELDRESULT
list of a left or right son or the attribute list of
the proper stored relation.

(4.3) Ensure relations are divide compatible.

(5) DIVORCE -- For each tree do a preorder traversal of the tree
where at each node if the leftson/rightson's STFLAG is TRUE
and NODNUM count greater than 1 do:
(5.1) Reduce the leftson/rightson's NODNUM count by 1.
(5.2) Make the LEFTPTR/RIGHTPTR nil so that when this node is

executed a stored relation will be used.

(6) REVCHAIN -- reverse the list of root nodes so that the trees
which have the formerly shared subtrees are executed before
the stored results of those subtrees are needed.

The importance of step 6 in the above algorithm is obvious. If

performance is to be improved by executing shared subtrees only once,

it must be ensured that they indeed are executed before the resulting

relation is used. However, step 6 only ensures that shared subtrees in

different queries are executed properly. Shared subtrees can also occur

within the same query and are just as easily eliminated by the SPLITUP

algorithm. In order to ensure that these shared subtrees are executed

before being used, note that in the elimination step (5) a preorder tra-

versal of each tree was done. Therefore, by executing the nodes of each

tree in a reverse preorder, shared subtrees will always be executed

before being used.

The OPTIMIZE Module

Once individual operator trees are available, the correctness pre-

serving transformations introduced in Chapter III can be applied to them

with the goal of optimizing the performance of the overall query.

56

Notation: For examples, the parts-supplier model will be used as

the stored relations (Figure l(c)) and the following pictorial notation

for the nodes in a tree will be used:

-- PROJECT -- SELECT - JOI N

-- UNION -- INTERSECTION - -- DIFFERENCE

- DIVIDE -- PRODUCT

In addition a shorthand notation for expressing queries in a single

line is:

A u B -- set union of relations A and B

A - B -- set difference

A n B -- set intersection

A '. T --projection of relation A onto the components given in
the projection list T

A : F -- selection of a subset of relation A of tuples for which
filter F is true, where F is a boolean predicate involving
the components of the tuples of A

A * B -- cartesian product or join on relations A and B

A - B -- division of A and B, where A is a binary relation and B
is a unary relation

57

Two types of tree transformation and one boolean simplification

procedure are implemented in the OPTIMIZE module. One type moves unary

operators down trees, while the other involves replacing a subtree of

set operations on the selections of the same relation by a compound

boolean expression. This second type will be discussed first.

The COMBOOL Algorithm. Consider the operator tree shown in

Figure 12(a). The relation R may be either a stored relation or an

intermediate temporary relation. A direct implementation of this tree

would result in R being read three separate times, and several new tem-

porary relations being created. This type of tree will be referred to

as a "boolean" tree. One reason for consideration of boolean trees is

that a boolean tree is the only way of representing compound boolean

restrictions on a relation using the strictest form of Codd's relational

algebra. But even if this strict form is not enforced the user may still

create queries which result in boolean trees; especially if the predicate

would be difficult to understand and formulate if not broken down.

The approach used is to translate boolean subtrees into a single

operation having a compound boolean predicate. If R is the common rela-

tion, T1 and T2 are trees, and E is any boolean predicate, the transla-

tion function is given by:

T{TI n T2} = T {T1} and T{T2}
r {Ti u T2} = T {Ti} or T{T2)
T(Ti[EJ = E and T{T1}
T{R} = true

For example, the tree in Figure 12(a) translates into the compound

boolean operation shown in Figure 12(b).

58

(a) (b)

D >'31 D D3

R lo 0 = ED1 > '3' and (D3

i W'4' or D4 z D5) and
D2 = D3]

D '4' D4 5

R R

Figure 12. (a) Set operations on SELECTs of the same relation R.

(b) Transformation of the tree in (a) into a single
SELECT.

The transformation of boolean subtrees insures that the common

relation is never read more than once. Further, if the common relation

is stored and has directories available then it may be possible to sig-

nificantly reduce the number of secondary storage page accessed by the

directory analysis.

This transformation can be easily implemented by a recursive pro-

cedure where the union or intersection nodes are tested for possible

combination. As long as the recursion processes the nodes such that

the sons are done before the father, as in postorder, then only one

pass is needed to make all possible combinations.

The COMBOOL algorithm implements the above procedure and simultan-

eously applies the idempotency laws of relational algebra as shown in

59

---I° , i t .. .

Table I (Page 38). Simultaneous application of these procedures

avoids the introduction of redundant expressions into the compound

boolean predicates and provides optimal simplification (at this level)

of the UNION, INTERSECT, and DIFFERENCE operators.

The COMBOOL algorithm:*

For each node in a postorder traversal of the tree which is a

UNION, INTERSECT, or DIFFERENCE operator do:

CASE "subtree" of:

apply law 1,2 or 3 from Table
R R I whichever is appropriate.

OR

R : apply law 4,5 or 6 from Table
I whichever is appropriate.

R R

combine into single SELECT
operation.

R R

The SIMSEL Algorithm. SIMSEL is an algorithm for simplifying the

boolean predicates of SELECT operations. In addition, each predicate

is put into a standard form which is necessary for the SELDOWN algorithm

(see later section) and which will also make implementation easier and

60

more efficient. The TREE procedures take the boolean expression

entered by the user and put it into postfix form. The purpose of

SIMSEL is to take this expression, put it into conjunctive normal

form and simplify this result as completely as possible.

The SIMSEL algorithm:

For each SELECT node in the tree do:
(1) Reverse the postfix order of the expression.

(2) Create an expression tree using an inorder recursive proce-
dure accessing sequentially the result of (1).

(3) Distribute OR operators into AND operators:
(x A y) v z= (x v z) A (y v z).
(xv (y A z) (xv y) A (xv z).

(4) Rotate the tree so that all AND operators are moved left as
far as possible. At this point the tree looks like:

This is now in the standard conjunc-tive normal form. Each triangle is
called an orgroup if it contains at
least one OR operator or it is an

and atomic node.

(5) Transform each orgroup by eliminating all redundant nodes.
This is expressed by the identities adapted from Table II,
where X is an orgroup, y is an atomic node:

yvy=y

y (y v X) y v X v y =y v X
y v RXv y) = vy) v y = X v y

(6) Transform each pair of orgroups using the following boolean
identities, where X, Y are orgroups, y is an atomic node:

X A X X
Y AY= y
X A y = y A X = y, if y is in X.
X A Y = V X = Y, if all nodes in Y are in X.

(7) Recreate the expression in postfix order.

61

_ ____I

The SELDOWN and PROJDOWN Algorithms. The other type of tree transfor-

mation moves the unary operators, SELECT and PROJECT, down the operator

tree. These are implemented via the SELDOWN and PROJDOWN algorithms,

respectively..

The SELDOWN Algorithm. Consider the two relations SUPPLIER and

SP. The query "Find the name and status of all suppliers who supply

any part in the quantity greater than 200" can be expressed by a user

in the relational algebra as:

JOIN SUPPLIER, SP WHERE S# = S# GIVING Ti
SELECT ALL FROM T1 WHERE QTY 200 GIVING T2
PROJECT T2 OVER SNAME, STATUS GIVING T3.

T1, T2 and T3 are temporary relations formed by the operations of JOIN,

SELECT, and PROJECT respectively. This query, represented as an operator

tree is shown in Figure 13(a).

(a) (b)

SNAME,STATUS SNAME,STATUS

QTY > 200

SUPPLIER

= S#QT > 200

SUPPLIER SP SP

Figure 13. (a) The tree for a user query, (b) The tree for a transforma-
tion of the query in (a).

62i

At this stage the tasks in the query are clearly identified

as the operations of JOIN, SELECT, and PROJECT. Without considering

the detailed implementation of SUPPLIER, SP, and these operations, a

good programmer would know that there are correctness-preserving trans-

formations which can be applied to improve efficiency at this level of

abstraction. !n particular it is beneficial to move SELECT operations

as far down the tree as possible using such transformations. This is

because the SELECT operation reduces the number of tuples to be pro-

cessed by subseuqent operations. Any reduction is particularly advan-

tageous when JOIN (or PRODUCT) operations occur later. In general a

JOIN operation on two relations, A and B, has to be performed as a full

Cartesian product to produce n(A)n(B) tuples from which the relevant

tuples are selected. However, any part of the selection filter which

is moved through the join is executed n(A) times rather than n(A)n(B)

times (or vice-versa). In the present case, the SELECT operation

rejects those joined tuples whose QTY is not greater than 200. The

effort involved in joining tuples which are subsequently thrown away

is wasted. Since the QTY domain occurs only in theSprelation, selection

can be performed on SP before joining the result with SUPPLIER. After

applying this transformation the tree appears in Figure 13(b).

Moving SELECT operations down the tree is straightforward in most

cases. As Table III shows, in all cases except JOIN and PRODUCT, the

select operation is either "distributed" through the other operation

or in the case of a sequence of SELECTs the filters are simply concaten-

ated. Some alternatives are given that require less filtering, but

these are not preferred for two reasons. First, the reason for the

transformations is that filters reduce cardinality significantly and so

63

- i

should be worth the repetition. Second, by making a symetric distribu-

tion, common subexpressions that lead to successful application of the

idempotency laws discussed in the next to last section are not destroyed.

The only really complex transformation occurs for joins. In

general the filter (F) associated with a join refers to both of the

relations (say A and B) being joined. However, there may be parts of

it that refer only to one or the other of the argument relations, and

this part could possible be factored out and moved down through the

join. Thus, it is desired to transform filter F into an equivalent F1

and F2 and F3, where filter F1 refers only to components of relation A,

filter F2 refers only to components of relation B, whereas filter F3

refers to both relations A and B. Clearly F1 and F2 should be as

large as possible. The algorithm for doing this is:

(1) Apply the boolean simplification procedure of SIMSEL to the
SELECT node. Now F will be in conjunctive normal form.

(2) Set F1 = F2 = F3 = true.

(3) For each conjunct x of F do:
If all elements of the conjunct refer to relation A then

F1 = F1 A x
else if all elements refer to relation B then

F2 = F2 A x
else

F3 = F3 A x.

(4) Transform tree:

64

F3 if F3 true

F

if if
~F1' Fl 2 F2~

A 8true true

A

In order that each SELECT operation is moved down the tree as far

as possible the following general algorithm is used:

SELDOWN Algorithm: For each node in a preorder traversal of the

operator tree which is a SELECT operation do: apply the appropriate

distribution law from Table III.

Notes on the Efficiency of Moving SELECTs. Transformations like

the distribution of a filter into a UNION do not necessarily improve

things. If A and B are disjoint, then the cardinality of their union

is the sum of their individual cardinalities and filter F is applied as

many times both with and without the transformation. Thus applying the

distribution must always be favorable. But if A and B overlap, then

for some tuples, if the filter is distributed, it will be applied

twice, which may not compensate for the saving of work in the union

obtained by performing the filtering first. In some cases, the filter

may not change the cardinality much, and then there is a loss by moving

the filter down the expression tree. For intersection and difference

this worsening of the situation when the filter does not change the

65

*m-j

cardinality significantly is even more marked. However, as noted before,

for joins -- especially where the join is necessarily a full quadratic

join -- the transformation almost always improves things.

Note, however, that moving SELECTs down to the leaves of the

operator tree has an important added advantage. During the evaluation,

the relation at a leaf is stored, and the presence of a filter would

enable the system to use any indexes or inversions present. This

could lead to significant savings compared to the alternative of reading

through all the tuples of the relation and selecting those desired using

the filter. This latter course is the only course available for filters

positioned at nodes other than leaves.

The PROJDOWN Algorithm. There are also benefits to be gained by

moving PROJECT operations down a query tree. PROJECT operations decrease

the width of tuples and, due to the elimination of duplicate tuples, may

also decrease the number of tuples in a relation. Tn Figure 13(b) the

PROJECT operation retains only the SUPPLIER attributes SNAME and STATUS.

It is therefore sufficient to supply JOIN with only the SNAME, STATUS

and S# attributes from SUPPLIER, and the S# attribute from the SELECT

operation. Figure 14(a) shows how the tree appears when additional

PROJECT operations are included before JOIN.

Notice that the original PROJECT must be retained in order to

eliminate the S# attribute before output. Each of the new PROJECT

operations can be retained or removed individually depending on whether

or not it increases efficiency. This decision is influenced by the

fact that the implementation of PROJECT operations cannot take advan-

tage of directories, whereas the implementation of JOIN often can.

66

(a) (b)

SNAME,STATUS i-L SNAME,STATUS

/ S# S# s

S#, SNAM SPLESTATUS S# SUPPLIER

SP SP

Figure 14. (a) Further transformations on the tree of Figure 13(b).

(b) Final optimized tree for the query of Figure 13(a).

The PROJECT operation over SUPPLIER will shield JOIN from using any

i existing directories. The PROJECT is therefore deleted. The other

PROJECT is retained, since there are no directories associated with the

output of the SELECT operation. The final optimized tree is shown in

Figure 14(b).

In contrast to the SELECT operation, the distribution laws for

PROJECT are somewhat more complex, in that several of the laws are

only applied when certain criteria hold. These laws are given in Table

IV. For the same reasons SELECT operations were moved down to the

leaves of the tree, it is desired not to move certain PROJECT opera-

tions there. For instance, implementations of INTERSECT and DIFFERENCE

need only compare primary key attributes to determine tuple eligibility

for the result relation and especially at a leaf node there generally

A 67

exist directories on these keys. Therefore, PROJECT operations which

would remove these keys should not be distributed through the particular

operation . Care must also be taken in moving a PROJECT operation through

a SELECT, in that by performing the PROJECT first, attributes referred to

by the boolean expression in the SELECT operation are not eliminated.

Once again the only complex transformation occurs for joins. The

projection list T) can be broken into two disjoint sets, one contain-

ing attributes from the first joined relation and the others from the

second joined relation. Thus, in general the PROJECT operation can be

split into two PROJECTs and moved through the JOIN. However, as brought

out in the example, moving a PROJECT through a JOIN at a leaf shields

the JOIN from the use of directories and thus lowers efficiency. In

addition, the original PROJECT must be retained if it does not include

both of the attributes used in the JOIN condition, or if the PROJECT is

not moved down one or both of the branches of the JOIN. (Note in a

PRODUCT operation it is never necessary to keep the original PROJECT.)

Two further reductions can be accomplished when moving PROJECTs.

First, if one of the projection lists created as a result of moving a

PROJECT through a JOIN is empty, then the JOIN is a useless operation

and can be eliminated, along with the branch for which the projection

was empty. Second, if a PROJECT operation does nothing; i.e., the

projection list contains all of the attributes of the input relation,

it can be eliminated. The algorithm for PROJDOWN is as follows:

PROJDOWN Algorithm: For each node in a preorder traversal of the

operator tree which is a PROJECT operation do:

(1) Eliminate it if possible.

68

(2) Apply the appropriate distribution law from Table IV, eliminating

a JOIN if possible.

Modification of the Transformation Algorithms. The transformation

algorithms given above have one fatal flaw. As theystand, the possibility

exists for destroying the shared subtrees found with the SPLITUP procedures.

Thus, a simple test to see if a shared subtree would be violated should be

inserted in each algorithm. Each shared subtree can be optimized indivi-

dually and since nodes are never moved up the tree, the recursive algorithms

above will automatically do this. The only side effect occurs when in the

PROJDOWN algorithm, a JOIN operation and one of its branches can be elim-

inated. If any or all of the branch to be eliminated is a shared subtree

then a way of executing that branch must be implemented. The problem was

solved by noting that the JOIN is only eliminated as a result of trying to

move a PROJECT through it. Since PROJECT is a unary operation, the shared

subtree is attached to the PROJECT as a second argument. This will ensure

that the subtree is executed without affecting the actual operation of the

rest of the tree.

The OPTIMIZE Algorithm. Now that the various optimization algorithms

have been described, the overall OPTIMIZE algorithm can be specified. The

order of application of the various algorithms is quite flexible; however,

some are better than others. Smith and Chang (Ref 12) and Hall (Ref 14)

both suggest moving select operations down the tree as their first step.

Smith and Chang further recommend that combining boolean subtrees be the

next step and then another application of moving the now combined selects

down the tree. In terms of the algorithms described here the order would

be:

69

1. SELDOWN
2. COMBOOL
3. SELDOWN
4. or 5. SIMSEL or PROJDOWN.

This order is inefficient in that the SELDOWN procedure must be called

twice, and in that within that procedure SELECT operations are unneces-

sarily moved through boolean subtrees which are to be combined later.

Thus this implementation uses the following OPTIMIZE algorithm:

Without violating shared subtrees do:

(1) COMBOOL -- combine boolean subtrees on a common relation

(2) SELDOWN -- move SELECT operations as far down the tree as
possible; calling SIMSEL's simplification pro-

cedure when moving through a JOIN

(3) SIMSEL -- simplify and standardize the boolean predicates
of SELECT operations.

(4) PROJDOWN -- move PROJECT operations as far down the tree
as possible but never through a SELECT or JOIN
operation at a leaf.

The RUN Module

Whether or not the tree is optimized, procedure calls must be gener-

ated to perform the operations specified. However, there is a certain

amount of optimization which can be done in this regard as well. This

part, developed in (Ref 12), is known as the coordinating operator con-

structor (Refer to Figure 8). The coordinating operator constructor

takes an operator tree and implements each operator from a set of basic

procedures in such a way that the sort orders of intermediate relations

are optimally coordinated. The set of basic procedures is described in

Appendix C.

Each procedure is designed on the premise that a relation is always

large compared to one of its directories. Each procedure operates on

70

X.

"piped" relations whenever feasible so as to avoid writing and reading

temporary relations to and from secondary storage. However, in several

binary operators (e.g., PRODUCT) it is essential to have one operand as

a stored relation, otherwise one operand subtree must be evaluated

repeatedly. The procedures always access stored relations sequentially

so as to avoid the high time overhead associated with random access on

secondary storage devices. When a temporary stored relation is used

repeatedly by some operator (e.g., JOIN) directories may be first created

to speed access and further reduce paging overhead. Each procedure

assumes its input relations do not contain duplicates, and UNION and

PROJECT remove any duplicates they create before passing the relation up

the tree.

SELECT operations are implemented by one generalized procedure.

This procedure is essentially an extension of the "list combining" and

"test tree" algorithms developed in (Ref 19). The idea is to utilize

directories to reduce the number of secondary storage pages which must

be accessed. The SELECT procedure always outputs tuples in the same

order as they are input.

There are three JOIN procedures. JOIN1 is only used for the

equality predicate in a frequent degenerate case, when one relation has

a single domain. Tuples are output in an order determined by the other

(multi-domained) relation. JOIN2 is used for most cases of the equality

predicate. The output relation is sorted on both "joining" domains.

JOIN3 is used for nonequality predicates. Tuples are output in an order

that corresponds to one of the input relations.

There are four procedures for each of the set operators UNION,

INTERSECT, and DIFFERENCE. The four procedures for UNION are typical.

71

The idea is to exploit any common fast access path (i.e., sort order or

directory) between the two input relations. UNION1 exploits a common

sort domain to output tuples, without duplicates, sorted on the common

domain. UNION2 exploits directories over a common domain. Output tuples

are not in any consistent sort order. UNION3 takes advantage of a situa-

tion in which one relation is sorted on domain P Asd the other relation

has a directory over D. Tuples are again output in no consistent sort

order. UNION4 is only utilized when there is no common fast access path.

Now the scheme for coordinating the selection of sort orders for

relations passed between operators can be described. From a considera-

tion of the basic procedures, it follows that there are circumstances in

which an operator at some node of the operator tree can be implemented

by any one of several procedure calls with comparable efficiency. Fur-

ther, each of these procedure calls will give a different output sort

order. An element of choice is therefore introduced into the sort order

of an intermediate relation. Such a choice can often be maintained (or

even increased) in intermediate relations on higher branches of the tree.

The sort order for an intermediate relation must be chosen so as to lead

to an optimum overall implementation of the operator tree.

As mentioned in Chapter III, Smith and Chang have developed a

relatively rudimentary, but often highly effective method for coordinating

the sort orders of the nodes in a tree, which involves two passes, up and

down, through the operator tree. As noted the UP-rules for the upward

pass are listed in Table V and the DOWN-rules for the downward pass are

listed in Table VI. The rules differ depending on whether the node in

question is: (1) at a leaf or (2) completely internal,and, in the case

of binary operators, whether a node has (3) a leaf left operand and an

72

.. _ / . .., .,,. .,l, ;. _ L , . .] ., . 11

internal right operand or (4) an internal left operand and a leaf right

operand. These rules were generated from the set of basic procedures in

Appendix C by considering the relative efficiency of each procedure in

all relevant situations (for more details see (Ref 20)).

To continue the example, the UP-rules and DOWN-rules will be applied

to the optimized tree in Figure 14(b). Assume that the primary key for

SUPPLIER is S# and the primary keys for SP are S#, and P#. Figure 15(a)

shows the result of applying the UP-rules to this tree in the case that

SUPPLIER is sorted on S# and SP is sorted on S# and directories exist for

the primary keys.

First the SUPPLIER branch is labeled with {S#}, since it is in this

order that tuples will always be retrieved from the SUPPLIER relation.

Similarly the SP branch is labeled with {S#}. Note that if SP were not

sorted the branch would have been labeled with {n}. The UP-rule for

SELECT (R [E) indicates that an efficient implementation of a SELECT

operation at a leaf will preserve the sort order (dR) of the stored rela-

tion. Therefore, the output of SELECT is labeled with {S#}. The UP-rule

for PROJECT (R[]) at an internal node indicates that if there are any

common domains between the input pso set (YR) and the set of projected

domains (a), then it is most efficient to output tuples sorted on one

of these common domains. In this case (YRn 0) = {S#}, and the output of

PROJECT is so labeled. The UP-rule for JOIN (R[C=D]S), where one operand

(R) is at a leaf and the other (S) is internal, indicates that if S is

awry and a diroctory exists for the joining domain (C) of R then the pre-

sew-" utpt sort order is dR . In this case dR = S# and C = S#, and so

A , labeled with (SO). Finally, for the upper PROJECT,

rAM "=J - ty. and so the UP-rule requires

(a) (b)

(SNAME,STATUS} _{SNAME,STATUS}
PROJECT3[T3.,{SNAME,STATUS},

SNAME]

{S# } T3 {S# }

JOIN1[SUPPLIER,S#,= ,S#,T2,

{S# {S#1 (S#1 T2 {S#} 2

SUPPLIER SUPPLIER PROJECT1CTl,{S#I]

{S#} TI {S#}

LSELECTSPAQTY > 200]

SP SP

Figure 15.(a) UP-rules applied to the tree in Figure 14(b).

(b) DOWN-rules applied to the tree in (a).

Now the DOWN-rules are applied starting at the root and working

down. Since (YR n 8) is empty, the DOWN-rule for PROJECT specifies that

that this node is to be implemented by the PROJECT3 procedure. The third

parameter of this procedure, which determines the output sort order, is

any arbitrary domain in the output pso set. In this case SNAME is arbi-

trarily chosen. The DOWN-rule for JOIN states that the JOIN1 procedure

should be used to implement this node. Similarly, PROJECT1 and SELECT

are specified for the remaining nodes.

The net result is that each operator is implemented as efficiently

as possible for the available input sort order(s). The only operation

which is denied the use of its most efficient algorithm is the upper

PROJECT: its input sort order is such that it must eliminate duplicates

by sorting on SNAME.

74

In this example there were no choices of pso at any branch other

than the root. This implies that operators could have been bound to

their implementations on the upward pass of the tree. In general there

will be a choice and binding must then be done on the downward pass.

This is illustrated in the next example.

Figure 16 gives a tree which cannot be further optimized by the

use of tree transformations. It is assumed that RI is sorted on domain

A, R2 is sorted on domain D, and R3 is not sorted. Application of the

UP-rules gives the labeled tree shown in Figure 17(a). Notice that

there are several branches with two or more pso's. The choice in this

case is introduced by the two leaf PROJECT operations. Figure 17(b)

shows how the DOWN-rules have coordinated sort orders and bound implemen-

tation procedures so as to take advantage of this choice. Examine the

advantages of the decisions made by the DOWN-rules in this example.

R1 {B,C,GI

A H

R2

A' B IC DITE nGH

R3
R3 R1 {A,B,C}

R2

Figure 1b. An operator tree te relations K1, K2, R3

75

(a) (b)

{G1 PROJECT2[T4,{B,C,GI]

{A,G,H) T4 (G) JOIN3[T2,A,>,H,T3,T2]

{A1 {GH} {A) T2 T3 {G1

PROJECT3[R3,{G,H},G]
n n INTERSECTI[R1,T1]

(AC1 {n} {A A R

PROJECT3[R2,{A,B,C},A]{D}Ri

R2

Figure 17. (a) UP-rules applied to the tree in Figure 16.

(b) DOWN-rules applied to the tree in (a).

The advantage of outputting tuples sorted on A from the PROJECT

operation on R2 is that both INTERSECT and JOIN can be implemented effi-

ciently. INTERSECT will have both its operands sorted on a common domain

and can therefore use a fast "merge" procedure. This intersection proce-

dure automatically outputs tuples sorted on A. In the case of a non-

equality comparison, JOIN requires one operand to be stored in sort order

on its "joining" domain. Since the "joining" domain of T2 is A and T2 is

already sorted on A, JOIN can be implemented without additional sorting.

The advantage of outputting tuples sorted on G from the PROJECT

operation on R3 is that the output PROJECT operation does not need to

perform additional sorting. Since T2 is stored in the appropriate sort

order, JOIN will pipe T3 so as to produce tuples which are also sorted

on G. The output PROJECT therefore receives tuples sorted on one of the

76

projected domains. This PROJECT can then remove duplicates by local com-

parison rather than by sorting.

From Tables V and VI it can be seen that the UP-rules and DOWN-

rules take into consideration only directory and sort order availability.

In general this is the only information known about relations at the time

when optimization is performed. However, it will be noticed that the

function a(Y), which means select an arbitrary element of Y, is utilized

in several rules. This function can be implemented by either using a

random selector or, if some method of predicting run-time condition

exists, selection could, for example, be from the predicted smallest

relation, or a domain whose directory is predicted to have the least num-

ber of distinct values.

After the DOWN-rules have been applied, some branches may still be

labeled with pso sets containing several elements. This implies that the

upper operations are insensitive to a particular set of sort orders, and

so the sort order can be selected at run-time when more information is

available.

The RUN Algorithm. The RUN algorithm incorporates the above proce-

dures with the necessary steps to ensure shared subtrees are executed

before being used:

(1) INSUPS -- link nodes of the operator tree in preorder through
the DOWNPTR field and in reverse preorder through
the UPPTR field.

(2) UPTREE -- accessing nodes via UPPTR, determine the pso set
for each node using UP-rules.

(3) DOWNTREE -- accessing nodes via DOWNPTR, create an implemen-
tation of each node using DOWN-rules.

(4) Execute the procedure calls created in (3), storing an inter-
mediate result if STFLAG is TRUE; i.e., this is a shared subtree.

77

Implementation Techniques at the SYSTEM Level

In Chapter II, the hardware and operating system on which the data-

base system was to run were introduced. In this section some of the

interfaces to that operating system are discussed.

The current size of the entire database system is approximately 50K

bytes. By the time low-level access procedures are implemented the system

will be well over the 64K suggested minimum for running the system. How-

ever, a very important feature of UCSD Pascal consists of its capabilities

for segmentation and overlays. Any program may be broken into a maximum

of seven SEGMENT procedures. Thus non-overlapping code can be put into

separate SEGMENT procedures where the code and data for each SEGMENT are

in memory only while there is an active invocation of that procedure. For

example, one-time code, such as the SETUP module, can be put in a SEGMENT

procedure. Then after performing the module, the now-useless code is

taken out of memory thus increasing the available memory space.

The UCSD Pascal system also supports a facility for integrating

externally compiled and assembled routines and data structures. These

modules are know as UNITs. More precisely a UNIT is a group of interdepen-

dent'procedures, functions, and associated data structures which perform a

specialized task. Whenever this task is needed within a program, the

program indicates it USES the UNIT. One UNIT is used in the database-

system. It contains data structures and subroutines used by more than

one segment procedure. In particular all procedures which perform special

functions on the terminal are included here. Thus if the terminal is

changed only the procedures in the UNIT need be changed.

78

......I

V VERIFICATION AND VALIDATION

Verification and validation are important aspects in the design of

any new system. They are especially important in this system design

because the algorithms used are new in their conception and ever newer

in their implementation. Verification of the current system is fairly

straightforward. As with most systems, testing is performed until the

system must be delivered. However, testing can be structured just as

the system is modularized. For instance, the procedure which moves a

SELECT operation through a UNION operation can be tested by creating an

appropriate tree, passing it to the procedure to be tested, and examining

the tree afterward. A procedure exists to print out an operator tree for

such examination. Since many of the tree algorithms are recursive, it

is best to test operations on them at the root node, an internal node,

and a leaf node. Verification is also important at the Data Entry Level,

since the system must ensure that only "valid" inputs are accepted and

"invalid" inputs are rejected.

The process of validation is somewhat more difficult. Since the

system is not complete, there is no feasible way to see if the optimiza-

tion algorithms actually improve performance. At this point only previous

validation studies can be examined. In his article on optimizing single

expressions (Ref 14), P. A. V. Hall has provided the results of an experi-

mental validation of a system employing some of the same procedures used

in the system described herein. (Notably missing are the algorithms

COMBOOL and except for the combining of sequences of projections, the

algorithm PROJDOWN.) The reader is referred to Hall's article for details,

but the basic results are summarized here.

79

i

Hall formulated seven queries from simple to complex and ran them

on three levels of his optimizer with each level adding more "optimization".

Figure 18 shows the breakdown of th3 three levels. Table VII describes the

rolations used in his test and Table VIII lists the queries tested using

the notation of Chapter IV. The results are presented in Table IX. Hall

concluded from the results that "the transformations do catch the extreme

cases without degrading well formulated queries to a great extent. In

practice the sizes of relations would be orders of magnitude larger, and

the savings would be more significant. The overhead for the optimizer

would become completely insignificant."

s

i8

4J

WIr. 4 4- goWD4-O
c v0 t4wO r-0 c -O

M -4 #A -

Wm WOO D 4)0 00(
r-4-0Q L 4-0 W)- C

Q0 C0 cC

-41

CC 0

11 0- 0-e.-2-

00 WO 00C 0 0 L

0

4-

Wn U W
W) c .00 0

I- W 41 410

01n LW OW 431

79- 0A WU 0U

(7l.w- 4J o 3cC I -

IxL

ZIO.0 r- C)0 0 C

041 L 0 5-

In UC0M 0 ~

*1-4

481

04-

039

CL
3

L4) 000f4 -

C o - - 4

4- COCO

0 4

AV

r-LC CD (88

*5-4J-4

en m) CfOL m nn v u

CL4. 0- L5C- C

cfcw L.j..c. A0 fl L) 4
VVV A" An M-.-1 CfVC- C4 V

4J5. ("

o1 L). U88L 04 m

CL l' .. A .
C LnV)A)Y m 4 ~CJ~ 3V CA* :31 **cLC

D D :) -4. I-G

U)3c .. 17: II-- i-

~4 (%J m en" mcj r r .

V-4 IJoV VoV)V
(a v A A A M4~) v M

m Mmm0'...........0' .

L) U) L) u- w.o

Udaa (i C' wcrC

diC'L -CX "C) *-V -~

"ul - w .- s- ~ L-

W 4Jt

5 - 4) - ' x ~ C'_ 'o x r x c1 x c-
.0z U). o z oz

82

Ir-. CY)
C%J CAI q
CV) LA)

uA C..A C..

.- (-) ' 4m 1

r- C.o L4 (

(A fCV i-CC))C'

Cfsf CU CJ LC%JIC)
ae C-) O%-. 0) ON

x~ aa m~ ccb "4 C) f
U. a .) aa t-) ca +

a C-) o iI3N.C; -4

C-)r< LO C.J)6C=.LM
-. u i uC3J - .o ~ ~ ~ ~ f In- ' C,-C.

L) u'' %D 11 %011 4 C-) .).-I-
En-4 o. .4u-4lL 1 +A

S.. II -4 I i-CJ')u

C\I.. L ii-

C-) VC-V)Oi imL

0-,0 "I Z a

Z6 .0 c6. Di = CDV,-
to4 04 - C.) %04 ci u.

u 3c :ccj% C-) 0 .L IILAf
I= =-#=--"mC.) C L 1X - a

<- -- C -) . I-) u

'-VW -I*-I " V.)O (C..) C
+ + 0- V)C L) 0= -l. -1- .)w -2

3c*, m 3c 031 M (n C
cr~ 1W -zc-0 4 V*MV r

CD c r 3,_ " O . L o c C-).Q0. U C
r- uuC Q L CO-) W- Co)I E-

~~ '~~ .IQC C..) CIL.L~ O-

';- CM" 4m. ~ C) ~ - C~ \

C ~ X% rL a'f aua

4-0C3C.)- P (,4-
ICW- C i I

83~

Table IX. Times taken to answer the queries of Table VIII without
optimizers and with the three levels of optimizer. Times shown are
the smallest of a series of trials (excepting query 7, in which only
one trial was made). The measurements were made on an IBM System 370,
model 145 using multi-access system CMS, with between 10 and 15 active
users during the trials .[Ref 14].

CPU time taken (s)
Query no. no-opt Mini Midi Maxi

1 2.01 2.21 0.73 0.81
2 10.37 1.20 1.69 2.22
3 3.78 2.73 2.74 2.95
4 5.49 5.73 5.83 8.41
5 4.13 4.36 3.60 3.76
6 3.87 4.12 4.25 3.23
7 estimated estimated 1401 693

10 days 10 days

Algorithm3 Algorithm3 Algorithml Algorithm2 Algorithm4
Distribute Distribute Combine Identify Common
filters, -filter projection W-idempotency subexpres-
not joins through removal sion eval-

joins uation

Mini Mini

Mi'di

Maxi

Figure 18. Relationship among the three levels of optimizer and the
transformations.

84

VI. CONCLUSION

OVERVIEW

The title of this thesis implies that two goals were sought. One

was to design a database system for pedagogical applications, the other

to design a relational database system using the most efficient implemen-

tation methods available. The first goal was met to a great extent in

the design of the data manipulation and definition language. The decision

to use a relational algebra based design was influenced by this goal as

well as the provisions to allow each user to be a kind of "mini-" database

administrator, defining and controlling distinct sets of relations.

The second goal was achieved in that a relational system was designed,

however, the efficiency of said system is yet to be conclusively proven.

Even so, a series of transformations that can be applied to a relational

query to produce an equivalent query that can be executed faster has been

presented. These transformations are in the strictest sense of the word

not optimizing but rather ameliorating because they can not be guaranteed

to improve the time taken to compute the result. However, as argued, the

chosen transformations are reasonably likely to improve performance.

An important consideration is the interaction between these goals.

Since the system is earmarked for use in a pedagogical environment, the

level of use will many times be very low; i.e., small queries on small

relations. Tijus, in these cases the optimization procedures should be

"turned off", either in part or completely, in order to eliminate their

overhead without affecting the user's viewpoint of overall system perfor-

mance.

85

LL(

FUTURE RECOMMENDATIONS

Due to the limited development life of this thesis and the expanse

of computing milue which this thesis addresses, there are many opportuni-

ties for future projects and/or follow on thesis investigations. These

recommendations are:

(1) Efficiently implement the low-level access modules using the

basic procedures outlined in Appendix C and the generalized access path

structure discussed in Chapter IV, keeping in mind the limits on space

and time imposed by the use of a micro-computer system.

(2) Once the low-level modules are implemented, a major project

would involve validating the optimization procedures and fine-tuning

them to exact optimal behavior from the overall system.

(3) Alternatives to the operator tree structure may be examined.

(4) Cost estimation methods for determining when to apply the

optimization procedures should be examined.

(5) Once the system is completed, introduction of a sub-schema

definition (Ref 2) level between the data entry and conceptual levels

may be a desired and useful addition.

(6) Consideration should be given to developing a dual data

entry system for educated users. For example, cutting down of the

length and/or number of prompts, automatic correction of simple errors,

etc.

FINAL COMMENT

Database systems defined using the relational view have great

potential for revolutionizing the information industry. The relational

view promises a simple, flexible approach to a person or business's

information retrieval problem; if only the problem of efficiency can

86

F AD-ACAG 395 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOO--ETC F/6 5/2
THE DESIGN AND IMPLEMENTATION OF A PEDAGOGICAL RELATIONAL DATAB--ETC(U)

UNCLASSIFIED AFIT/GCS/EE/79-1N NL

2llllllllll

IflflllllllliI.
EEEEEEIIEEIIIE
E///I/EEE///EEEI

*flfle0

be solved. It may be that technology may solve the problem by making

computers bigger, faster, and cheaper so that what is inefficient now

will be tolerable later. However, even larger improvements can be made

by improving software which is currently a generation of growth behind

the hardware on which it runs.

j 87

BIBLIOGRAPHY

1. Codd, E.F., "A Relational Model of Data for Large Shared Data Banks,"
Communications of the ACM, 13 (6): 377-387 (June 1970).

2. Date, C.J., An Introduction to Database Systems (Second Edition).
Reading: Addison-Wesley, 1977.

3. Banerjee, Jayanta, et al. "DBC -- A Database Computer for Very Large

Databases," IEEE Transactions on Computers, 28 (6): 414-429 (June 1979).

4. CP/M User's Guide, Digital Research. (Available from AFIT/ENE).

5. UCSD (Mini-Micro Computer) PASCAL, Version 11.0, Institute for Infor-
mation Systems, University of California, San Diego (March 1979).
(Available from AFIT/ENE).

6. Whitney, Kevin M., "Relational Data Management Implementation Tech-
niques," Proceedings 1974 ACM SIGMOD Workshop on Data Description,
Access, and Control, New York (1974).

7. Palermo, F.P., "A Data Base Search Problem", Proceedings of the
COINS-72) Symposium (December 1972).

8. Nijssen, G.M., "Present and Future Possibilities of Database Technology,"
Proceedings of the IFIP Congress, Stockholm (1974).

9. Codd, E.F., "Relational Completeness of Database Sublanguages," Courant
Computer Science Symposium 6 Data Base Systems, 321-328, New York 74).

10. Popa, J.H., "Relational Data Management", Department of Defense, 1976
(AD A029892).

11. Chamberlin, D.D. and R.F. Boyce "SEQUEL: A Structured English Query
Language," Proceedings 1974 ASM SIGMOD Workshop on Data Description,
Access, and Control, New York (1974).

12. Smith, J.M., and P.M.-T.Chang "Optimizing the Performance of a Relational
Algebra Database Interface," Communications of the ACM, 18 (10): 568-579
(October 1975).

13. Eswaran, Kapali P. and Donald D. Chamberlin "Functional Specifications
of a Subsystem for Data Base Integrity,"Proceedings International
Conference on Very Large Data Bases (September 1975).

14. Hall, P.A.V., "Optimization of Single Expressions in a Relational Data
Base System," IBM Journal of Research and Development, 20 (3): 244-257
(1976)

15. Haerder, Theo "A Generalized Access Path Structure," ACM Transactions
on Database Systems, 3 (3): 285-298 (September 1978).

88 _ _ _ _

16. Bayer, R. and E. McCreight, "Organization and Maintenance of Large
Ordered Indexes," Acta Infromatica 1 (3): 173-189 (1972).

17. Wedekind, H., "On the Selection of Access Paths in a Data Base System,"
In Data Base Management, J.W. Klimbie and K.L. Koffeman, Eds. Amsterdam:
North-Holland Publishing Company, 1974.

18. Blasgen, M.W., et al., "An Encoding Method for Multi-field Sorting and
Indexing," IBM Research Report RJ1753, IBM Research Laboratory, San
Jose, California (March 1976).

19. Astrahan, M.M. and D.D. Chamberlin, "Implementation of a Structured

English Query Language," Communications of the ACM, 18 (10): 580-
588 (October 1975).

20. Chang, P.V., "A design for a relational database system," University
of Utah Technical Report.

89

APPENDIX A

A COMMUNICATION NETWORK BETWEEN THE ALTAIR 8080

AND THE INTEL 6080 MICROPROCESSOR SYSTEMS

The steps used in bringing up CP/M and consequently UCSD Pascal on

the ALTAIR 8080 system using the existing facilities of CP/M on the INTEL

8080 system are outlined below.

1) The first step was to design a communication network between

the Intel and Altair. A three way RS-232 interconnection box was designed.

The schematic for this box is shown in Figure A-1. The cable connections

were made as follows:

Cable 1 -- Intel serial CH2

Cable 2 -- Altair serial Port 1

Cable 3 -- CRT Modem Port

The CRT to which Cable 3 was connected was used to talk to the Intel.

Another CRT was needed to talk to the Altair. Thus a separate RS-232

cable was connected to the second CRT's Modem Port and to the Altair,

serial Port 9,

90

LO 0

-- U

c4J
UC

4.) Cn
33

r. 0%

44.)

L.

C%j \

91.

The following two configurations for the switches were used in

this project:

Configuration 1 Configuration 2

I

Configuration 1 allows the systems to act independently, but with input

to the Altair allowed via Port 1 from the Intel machine. Configuration

2 forces the Intel system to accept inputs from the Altair rather than

its CRT. Input is still allowed to the Altair via Port 1.

2) The next step was to create two programs, one to run on the

Altair, the other on the Intel, with the purpose of transferring a CP/M

core image to the Altair and then forcing the Altair to execute that

image. This CP/M image will force the Altair to access the disks of the

Intel system over serial Port 1. Thus a program to make the Intel think

it was a disk was designed. Under the purview of this program the Intel's

sole purpose was to do disk I/O for the Altair. When the Altair wished

92

to read a sector it would send an 'R' over the serial line. This would

tell the Intel to prepare for a read, receiving the disk, track, and

sector numbers the Altair was now sending it. The Intel would then access

the disk and send the information back to the Altair over the serial line.

Similar actions occurred for a disk write. In addition, since the Altair

is now accessing the Intel disk, when a reboot is necessary, the disk

which it reboots from must contain the same CP/M image passed to the Altair.

This can be done using the SYSGEN program, by first building the image in

core and then via SYSGEN putting it on the disk.

The programs to do this were CMP16K -- program on Intel to transfer

CP/M image, BOOTCPM -- program on Altair to get core image and transfer

control to it, and DISKSIM -- program on intel to simulate a disk over

the serial lines. The source code for BOOTCPM and DISKSIM are attached;

however, the source code for CPM16K and the disk which was created to

reboot CP/M under control of the Altair was destroyed in one of several

disk crashes not related to this effort. A description of the content of

CPM16K appears below.

The CPM16K program contains a CP/M core image with a BIOS which

will force the Altair to perform disk accesses over serial Port 1. The

actual executable program does the following:

1. Send a start character to the Altair; this is the character

which BOOTCPM waits for.

2. Send the address where the Altair is to start storing the CP/M

image, the length of the image and an address for the Altair to go to

to start executing the CP/M.

3. Send the CP/M image.

4. Quit.

93

The following steps were used in executing the above procedures:

0) Set switches on box to Configuration 1.

1) Bring CP/M up on the Intel system.
On)2Int2) Change baud rate of Intel serial CH 1 to 9600 baud.IntelI

CRT 3) Prepare to execute CPM16K; i.e., type CPM16K, but no
carriage return.

4) Bring the Altair operating system up.

5) Mount disk 0; i.e., type MT 0 <cr>.On

Altair 6) Execute linker; i.e., type LINK <cr>.

CRT 7) Link in BOOTCPM; i.e., type L BOOTCPM 0 <cr>.

8) Execute BOOTCPM; i.e., type X <cr>.

O 9) Execute CPM16K; i.e., type <cr>.
On
Intel 10) Execute DISKSIM; i.e., type DISKSIM cr and immediately

change switch settings to Configuration 2. It not done
CRT soon enough, the entire process must be repeated.

11) The CP/M prompt should appear on the Altair CRT.

3) The next goal was to create a CP/M disk for the Altair system.

Using the facilities of CP/M brought up with the above procedures, pro-

grams to perform disk I/O for the Altair disks were created. These pro-

grams were patched into the BIOS of the CP/M image so that then access

could be made to either the Intel disks over the serial lines or the

Altair disks using its own disk access ports. Using this new version of

CP/M, a program to read in tracks 1 and 2 was placed on track 0, sector 1

of the future CP/M disk. Then using the CP/M utility, SYSGEN, a copy of

the CP/M image was placed on the disk. SYSGEN places this copy on tracks

I and 2. At that point a complete CP/M disk existed for the Altair, and

only a method of booting that disk was needed. Thus a program was

created, to reside in PROM, which would first, copy the I/O for doing a

94
i

disk access from the PROM down to location 3000H (hex address), so that

the boot could use it, and then read in track 0, sector I from the disk,

and finally transfer control to that program.

The programs used in this step are ZERO -- the program residing on

track 0, sector 1, and ALT-ROM the program put in PROM. The source code

for these programs are attached.

4) Now that CP/M existed as a stand alone system on the Altair,

USCD Pascal could be easily implemented. Since the disk simulation pro-

gram was still available, and the BIOS for the Altair CP/M still included

the functions necessary to use it, a Pascal system disk was copied from

the soft-sectored disk that the Intel uses to the hard-sectored disk

the Altair uses. With appropriate modifications for the type of terminal

being used, Pascal was then functional.

The procedures to be used now to bring CP/M up on the Altair with

access to both its own disks and the Intel disks are as follows:

1) Set switches on box to Configuration 1.

2) Bring up CP/M in Intel.

3) Bring up CP/M on Altair by executing the program in PROM located

at F800H.

4) Execute DISKSIM on Intel.

5) Switch box to Configuration 2.

6) Disk access is as follows:

A: Altair drive 0

B: Altair drive 1

C: Intel drive 0

D: Intel drive 1.

7) The Intel CRT can be disconnected if desired and the upper

switch on the box set to the neutral or middle position.

95

i BOOTCP' PROGRAM WJHICH RUNS ON ALTAIR
STROR EQU 200H
STAK EQu 300H

ORG OF800H
LSET EQU 11H
SERP EQU 13H
SERS EQU 12H
RBR EQU 1
TXRDY EQU 2
BOOT Hui A1LSET

OUT SERS
BLOOP LXI SPJSTRK

CALL GETCH
CPI ,.
JNZ BLOOP
CALL GETRO
SiLD STRR
CALL GETAD
XCHG
CALL GETAD

Q.OOP CALL GETCH
NOV MIR
INX H

ORA E
JNZ GLOOP
LHLD STRDR
PCHL

GETAD CALL GETCH
NOV LR
CALL GETCH
NOV H, A
RET

GETCH IN SERS
RNI RBR
RET GETCH
IN SERP

96

3 PROGRAM DISKSIM, RUNS ON THE INTEL
3 THIS PROGAM SIMULATES THE EXISTANCE OF A DISK.
a THROWUG A PROTOCOL OVER THE LINES IT WILL
3 ACCESS THE DISK FOR THE REQUESTING COMPUTER.
3

ORG l08H
STAK EQU 1800H
DBUF EQU 2000H

LXI SP,STAK
LXI BoDBUF
CALL SETDMR
WUI R,; SEND A BAD BLOCK FIRST
MUI B 130 ; 128+ START+CS

SLOOP
CALL SENDCH
DCR B

H * JtNZ SLOOP

FDLOOP
CALL GETCH
CPI R' CHECK FOR RN "R"
JNZ WRITETEST
CALL GETDTS
ImJI R,'R"
CALL SETDTS
CALL READ
MUI E,8
LXI H,DBUF
mUI B,128
mUI A,':
CALL SENDCH

RLOOP R,
mOU A,M

CALL SENDCH
ADD E
NOU ER DO CHECKSUM
INX H
)CR 8
JNZ RLOOP
NOV A,E 3 SEND CSUK
CALL SENDCH
J'P FDLOOP

URITETEST
CPI "g"f

J'NZ FDLOOP s IF NOT TRY AGAIN
CALL GETDTS 3 GET VALUES FOR DISK TRK SECTOR
mII E, 3 CHECKSUM
HIJi 9,128
LXI H,DGUF

97

hILOOP
CALL GETCH

IW(H
Al)D E
NOV ER
OCR 8
JNZ ULOOP
CALL GETCH
SUB E i SUBTRACT CHECK'SUM
JNZ BROTRANS
IIUX R,'W' 3SIGNAL FOR WRITE
CALL SETDTS
CALL WRITE
Ku pMVI
CALL SENDCH
Jimp FDLOOP

BRDTRRNS
NUi ,B
CALL SENDCH
JMP FDLOOP

RBR EQU 2
TXRDY EQU I
COtIST EQU eF7H
CONIN EQU OF6H
CONOUT EQU OF6H
SENDCH

PUSH H
PUSH B
PUSH D
PUSH PSW

PLOOP IN CONSTI
ft41 TXRDY
Jz PLOOPI
OUT CONOUT
POP D
POP B
POP H
RET

GETCH
IN COI4ST
RHI RBR

IN CONIN
RET

98

I

3 GET DIS DISK, TRACK, SECTOR
a

GETDTS
CALL GETCH
STA DISK
CALL GETCH
STA TRACK
CALL GETCH
STA SECTOR
RET

a

DISK DB 0
TRACK DO 8
SECTOR DS I

SETDTS
STR PRTYPE ; STORE A IN PRINT STRING
IDA DISK 3
HOU CR 3PUT DISK NUM IN C FOR SELDSK
CALL CONUHEX
SHILD PRDISK
CALL SELDSK
I.D TRACK
NOU CIR PUT TRACK IN C FOR SETTRK
CALL CONUHEX 3PUT HEX UAL OF A IN HL
SHLD PRTRRCK
CALL SETTRK
LDA SECTOR
10. C,R
CALL CONUHEX
SHLD PRSECTOR
CALL SETSEC
JlP POUT

STRING D8 eAH,ODH
PRTVPE DB -RD=.
PRDISK DB S eS"
PRTRACK DB "0S"
PRSECTOR DB '0S'

DB 8,0,810

I PRINT OUT ACCESS STRING
POUT

LXI HSTRING

99

PROUTLOOP
NOVi RIM

A J CHECK FOR ZERO
RZ
NOV CIR
PUSH H
CALL LUT
POP H
INX H
imp PROUTLOOP

CONUHEX
PUSH PSU
PUSH D
PUSH 8
NOV BAR

CALL FIMUM
NOV HAR

RR
RR
RR
RAR

CALL FIXHUM
NOV LA
POP a
POP D
POP P9J *

FIXNUtI

CPI ''1

RET

100

3 CPH INTERFACE ROUTINES

SELDSK: LHLD 0881H 5GET BIOS ADOR
Hui L~16)4

*1 PCHL
SETSEC: LHLD 0001H

WJI LP21H
PCHL

-iSETTRK: LHLD 081H
ml L.1EH
PCHL

SETt*IA: LHLD 800iH
Nut L,24H
PCHL

READ: LHLD MGIN
MU Iu L,27H
PCHL

WRITE: LHLD eeiH
MI L,2AH
PCHL

HOtNE: LHLD e88iH
mUt L,18H
PCHL

1ST
RET
LILD 1
Hui L,8FI

END

101

r

z ZERO PROGRAM WHICH RESIDES ON TRACK O, SECTOR 1
i OF ALTAIR CP/H DISK, USED TO BOOT

ORG 0
MEMRD EQU A500H R ADDR TO READ TRACK 1 AND 2 INTO

DONE EQU 0BA00H 3 PLACE TO GOTO IN CP/M WHEN DONE
LXI H,MEMRD ; READ IN ADDRESSLXI D, 1 ; BLOCK NUMBER
muI C,23 ; SECTOR COUNT FOR TRACK I

LOOP MII Be ; DISK NUMBER
PUSH D
PUSH H

HERE CALL 3008H ; READ A SECTOR USING CP/I BIOS
ORA R ; SEE IF ERROR ON READ
JHZ HERE ; IF SO TRV READING AGAIN
POP H
LXI D,128 ; BUMP HEM RDDR ANOTHER SECTOR
DAD D
POP D
INX D ; NEXT SECTOR
DCR C ; DONE WITH TRACK 1?
.1NZ LOOP
NOV RE ; SEE IF DID TRACK 2
CPI 28
iP DONE ; IF SO START CPFI-IHG
LXI D,32 ; ELSE START NEXT TRACK
fIJI C,26
jMP LOOP
END

,, -, .*: " T ..

102

; ALT-ROM PROGRAM WHICH RESIDES IN PROM ON TNE
j ALTRIR AT LOCATION F800, BOOTS CP/M
ROM EQU 1FS88H
LOC EQU 3080H
DELTA EQU -19H
BEG ORG LOC+DELTR

LXI SP,3FFFH
LXI H,ROM-DELTR
LXI D, STRRT
LXI B,NB

ONW MO' Al.M
STRX D
INX N
1149 D

DCX B
MOU SB
ORR C

JNZ ROM+ONW-BEG
JMP START2

START ;ENTRY TO RERD BLOCK IN DE,RDDR IN HL,DISK IN B
JimP READ ;ALLOWS EASY INTERFACE TO OTHER. BOOT

STRRT2 ;ENTRY TO READ TRACK 0 SECTOR I
mui Be
LXI DO ;TRRCK 0 SECTOR 0
LXI Ho ;READ INTO LOC 0

JI R,129
CRLL READ
3imP 0

REMD
SHLD DMR ;SRE DMA RDDR
HuI R, 129 ;NUMBER OF BYTES TO READ
LXI HMYDMR ;LOC OF READ BUFFER
CRLL RERDA ;DO DISK 10
ORR A ; SEE IF ERROR
RNZ ; IF SO RETURN
WJI 9.8

LHLD DMA
LXI DMVDMR
NI C,128

EXCH LDAX D
NOMIR
XRA 8
RRC

OV BR
INX D

DCR C
JNZ EXCH
LDRX D

103

XRA B XCOMPARE WITH CRC
JNZ BADCRC
XRR A SZERO A
RET

BAD MC NI A,6 INDICATE BAD CRC
RET

3 DISK HANDLING ROUTINE FOR THE ALTAIR DISK DRIVE
3

ENTER AT READ OR WRITE WITH THE FOLLOWING VALUES
3 IN REGISTERS R,B,DEAND HL.
3
3 REG A CONTAINS NUMBER OF BYTES TO BE INPUT OR OUTPUT
1 REG B CONTAINS THE DISK DRIVE NUMIBER
3 REG DE CONTAINS THE BLOCK NUMBER RANGING FROM 0
3 TO 2463 DECIMAL
3 REG HL CONTAINS THE BUFFER ADDRESS WHERE DATA 13 TO
3 BE READ FROM OR WRITTEN TO

A ALL REGISTERS ARE RETRUNED INTACT
3 INTERRUPTS ARE NOT ALLOWED DURING DISK 1/0 AND THE
3 INTERRUPTS ARE ENABLED ON RETURN
3
3
3 SUBROUTINE TO ENABLE DISK DRIVE
a

ENRB LXI H, TRKNM ; POINT TO START OF TRACK TABLE
AmB ; PUT DRIVE NUMBER IN REG A

ENRBi DCR A ; INCREMENT HL S0 THAT IT WILL
JN ENAB2 ; POINT TO THE CORRECT STATUS BYTE
INX H
ip ENABI

ENR12 MOV RM ; GET STATUS B'E FOR SPECIFIED DRIVE
ANI 80H ; TEST IF IT HAS BEEN INITIALIZED
JNZ TRKO ; IF NOT THEN INTIOLIZE IT
IDA DRVNM ; GET CURRENT DRIVE NUIBER
CHP 9 ; IS IT THE SAME AS REQUESTED DRIVE?
JNZ ENAB3 i IF NOT THEN ENABLE NEW DRIVE
IN DSTRTI 3 CHECK IF CURRENT DRIVE IS ENABLED

3 IN CASE DRIVE DOOR HAS BEEN OPENED
RNI ENBIT
RZ ; RETURN IF ENABLED

ENAB3 NOV AB ; GET DRIVE NUMBER /
STA DRVNN ; AND SAVE IT
OUT DSTATI ; ENABLE DRIVE
IN DSTRTI ; IS DRIVE ENABLED NOW?
RNI ENBIT 3
J3Z ENRB3 s IF NOT KEEP TRYING
RET

104

; SUBROUTINE TO FIND TRACK 0

TRKO CALL ENAB3 ; ENABLE DISK DRIVE
TRK1 CALL MOVE ; BE SURE HERD tOVE IS ALLOWED

; TO GRUPRNTEE HEAD IS SETTLED
IN DSTATI ; GET DISK STATUS
ANI TOBIT ; CHECK FOR TRACK 0
JZ TRK02 ; GO SET STATUS IF ON TRACK 0
CALL OUTI ; IF NOT 0, STEP OUT
JiP TRK8I ; CHECK AGAIN FOR TRACK 0

TRK2 NOV NA ; SET DISK STATUS BYTE TO INDICATE
; ZERO AND THAT DRIVE HAS BEEN INITIALIZED

3 SUBROUTINE TO STEP HERD OUT

OUTI CALL MOVE ; BE SURE HERD MOVE IS ALLOWED
WJl A, OUTBT ; GET STEP OUT COMMAND
OUT DCONT ; STEP HEAD OUT
RET

I SUBROUTINE TO STEP HEAD IN

INI CALL MOVE ; BE SURE HERD MOVE IS ALLOWED
mUV R,INBIT ; GET STEP IN COMMAND
OUT DCONT ; STEP HEAD IN
RET

J SUBROUTINE TO FIND TRACK N AND SET THE
J HEAD CURRENT SWITCH STATUS

TRKN NOV RIM ; GET CURRENT TRACK NUMBER
CmP B 3 CHECK FOR DESIRED TRACK
JZ STHCS ; IF EQUAL GO SET HERD CURRENT SWITCH
JC MUIN ; STEP HERD IN IF B IS GREATER THAN A

WJOUT DCR A ; DECREMENT TRACK NO
NOV MA ; AND SAVE IT
CALL OUTI ; AND STEP HERD OUT
WJIN TRKN ; CHECK AGAIN FOR CORRECT TRACK

RUIN IHR A ; INCREMENT TRACK NO
NOV MR ; AND SAVE IT
CALL INI ; AND STEP HERD IN
JP TRKN ; CHECK AGAIN FOR CORRECT TRACK

STHCS CPI 43 ; IS TRACK GT OR EG TO 43?
mUI A, HCSON ; GET HEAD CURRENT ON COMMAND ei4
JNC STHC ; IF GT OR EQ TO 43 SET HEAD CURRENT SWITCH
mUI A, HCOFF ; GET HEAD CURRENT OFF COMMAND IF LT 43

STHC STR HCS ; SAVE HERD CURRENT SWITCH STATUS
RET

105

xiW 1Tr

3 SUBROUTINE TO DEDUCE TRACK AND SECTOR NUMBERS
3 FROM LOGICAL RECORD NUMBER SUPPLIED BY CALLING ROUTINE

RECRD MOU ARE ; GET LOW BYTE OF RECORD NUM
ANI IFH ; ISOLATE LOW FIVE BITS (SECTOR ADDR)
NOV CA ; SAVE SECTOR ADDRESS IN C
NOU RfE ; GET LOW BYTE AGAIN
CALL ROT ; ROTATE TO GET LOW THREE BITS OF TRK NUM
ANI B7H 3 ISOLATE THOSE THREE DATA BITS
NOV B,A SAUE THEM IN B
MOV R,D 3 GET HIGH BYTE OF RECORD HUM
CALL ROT 3 JUSTIFY IT AS ABOVE
ANI 6F8H ; ZERO LOW THREE BITS
ORA B ; OR IN THE LOW THREE BITS
CPI 78 ; CHECK FOR VALID TRACK
JNC ERRI ; JUMP IF ERROR
NOV BR 3 SAVE TRACK NUMBER IN B
STR TEMP
RET

a

; SUBROUTINE TO ROTATE THREE TIMES

ROT RLC
RLC
RLC
RET

a

3 SUBROUTINE TO WAIT TILL HEAD MOVE IS ALLOWED
a

MOVE IN DSTAT1 GET DISK STATUS
ANI MUBIT 3 CHEC HERD MOE BIT
JNZ MOVE 3 WRIT TILL MOVE IS ALLOWED
RET

; SUBROUTINE TO SAVE REGISTERS AND INVOKE SUPPORT ROUTINES
; TO PREPARE DISK FOR READ OR WRITE

INIT SHLD BUFAD z SAVE BUFFER ADDRESS
XTHL ;PUSH HL AND GET RETURN ADDRESS
PUSH D SAV E OTHER REGISTERS
PUSH B
PUSH PSW

PUSH H ; PUT RETURN ADDRESS BACK OH STACK
STA BYTES 3 SAVE BYTE COUNT
CALL ENAB 3 ENABLE DISK DRIVE
CALL RECID 3 GET TRACK AND SECTOR NUMBERS
CALL TRKN s POSITION HEAD
LHLD BUFAD 3 GET BUFFER ADDRESS BACK IN HL

106

p_

IN DSTATI ; GET DISK STATUS
ANI HDBIT ; CHECK IF HEAD IS LOADED
JZ OKAY ; SKIP LOAD IF ALREADY LOADED
VlI RHDBIT 3

OUT DCONT 3 LORD HEAD
OKRY IDR BYTES 3 GET BYTE COUNT

NOU DA AND KEEP IN D
DI 3 DON'T ALLOW INTERRUPTS DURING DISK I/O

3 SUBROUTINE TO FIND START OF DESIRED SECTOR
3

IN POS ; READ SECTOR POSITION STATUS
OV BA ; SAUE IN B
ANI SECBT ; TEST FOR START OF SECTOR
JNZ SEC ; IF NOT START TRY AGRIN
NOV RB ; GET SECTOR NUMBER IN ACCUM
RAR ; JUSTIFY IT
RNI IFH ; ISOLATE ADDRESS BITS
ClP C ; CHECK FOR DESIRED SECTOR
RZ ; RETURN TO READ OR WRITE IF CORRECT SECTOR
JIMP SEC * IF NOT I TRY AGAIN

3 ENTRY POINT TO READ A SECTOR

READR CALL INIT 3 GET READY TO READ
RYN IN DSTRTI 3 GET DISK STATUS

RAL ; SHIFT DATA AVAILABLE BIT TO CARRY
JC RSYN ; LOOP TILL DATA IS READY
IN DATA ; READ SYNC BYTE

FB IN DSTRT1 ; GET DISK STATUS
RRL ; SHIFT TO CARRY
JC FB ; KEEP LOOKING FOR FIRST BYTE
IN DATA ; READ FIRST BYTE

RDATI NOV E,R ; PUT DATA IN E SO READ ROUTINE WILL WORK
RDAT IN DSTATI ; GET DISK STATUS

RAL ; SHIFT TO CARRY
JC RDRT ; KEEP LOOKING FOR DATA READY
IN DATA ; READ DATA

OU M,E ; STORE FIRST BYTE
INX H ; POINT T NEXT BYTE IN BUFFER
DCR D 3 DECREMENT BYTE COUNT
JZ EXIT 3 EXIT IF DONE
NO NR IF NOT DONE. STORE THIS BYTE IN BUFFER
INX H POINT TO NEXT BYTE IN BUFFER
DCR D s DECREMENT BYTE COUNT
IN DRTR s TIME TO READ NEXT BYTE FROM DISK
JNZ RDRTI I READ MORE IF NOT DONE

107 i _

S ROUTINE TO LEAVE DISK HANDLER
a

EXIT POP PSW 3 RESTORE REGISTERS
POP B
POP D
POP H
XRA A
RET J 60 BACK TO CALLING ROUTINE

a

0 APPROPRIATE ERROR MESSAGE IF YOU HAVE THAT CAPABILITY
a

ERRI MUI All
POP D
POP B
POP D
POP H
RET

a

3 STORAGE REQUIRED BY DISK HANDLER
J MAY BE ORG'D TO RNYW rHERE YOU HAVE MEMORY IF
; YOU WANT THE DISK PROGRAM IN PROM

DRNM D 0 C CONTAINS CURRENT DRIVE NUMBER
TRKN D 80H I TABLE OF STATUS BYTES FOR DRIVES 0-3

DB 80H 3 STATUS BYTES ARE INITIRLY SET OT 80 HEX
06 80H, SO EHABLE ROUTINE W ILL IIT DISK
DB 8OH 3 DRIVES THE FIRST TIME THEY ARE USED

; AFTER INITIALIZRTION THE STATUS BYTE HOLDS THE
; CURRENT TRACK POSITION FOR ITS DRIVE
HcS 80H 3 STATUS FOR HEAD CURRENT SWITCH
BYTES D8 0 3 TEMPORARY SAVE SPACE FOR NUMBER

z OF BYTES TO BE INPUT OR OUTPUT
DMA DW s0 3 SPACE FOR READ/WRITE BUFFER ADDR
BUFFD DW 0 3 TEMP SAVE SPACE FOR BUFFER ADDR

TEMP DB OFFH
MYDIA EQU $+5 BUFFER FOR READ AND WRITE

101.,'.. I
--~

10 ,, 2*

3 EQUATES

NB EQU 200H W IUBER OF BYTES IN PROGRR
DSTRTI EQU 8 ; DISK STATUS PORT
DCONT EQU 9 3 DISK CONTROL PORT
POS EQU 9 3 SECTOR POSITION PORT
DATA EQU 10 3 DATA PORT
.DBIT EQU 4 3 HEAD CONTROL AND TEST BIT
ENBIT EQU 8 * DISK ENABLED TEST BIT
TOBIT EQU 40H 3 TRACK 0 TEST BIT
INBIT EQU 1 3 STEP HEAD IN COMMAND
OUTET EQU 2 3 STEP HEAD OUT COMMAND
NUBIT EQU 2 HEAD MOVE TEST BIT
HCSON EQU OCOH ; HEAD CURRENT SWITCH AND WRITE ENABLE
HOFF EQU 80H ; WRITE ENABLE AND HEAD CURRENT SWITCH OFF
SECBT EQU 1 ; START OF SECTOR TEST BIT
SYNC EQU OFFH ; SYNC BYTE
END

log/il g

APPENDIX B

USER'S GUIDE: THE ROTH RELATIONAL DATABASE SYSTEM

INTRODUCTION AND OVERVIEW * SECTION 1

The database system (hereafter referred to as "the system") des-

cribed in this document is a system intended to run on stand alone micro-

and mini-computers under the control of the UCSD Pascal operating system,

Version 11.0. All system software is written in Pascal, resulting in

relatively straightforward software maintenance and enhancement.

The system is designed to be used primarily with a CRT terminal

as the CONSOLE device; however, the system is flexible enough to be

reconfigured for slower hard-copy terminals. The system does require

some kind of fast mass storage such as a floppy disk system or better.

The initial development of the system was done onan Intel 8080 micro-

processor with dual-drive floppy disks and an ADM-3A CRT terminal.

1.1 The Database System: An Overview

The structure of the system is best conceptualized in terms of the

"tree-like" structure diagram in Figure B-1.

The diagram in Figure B-1 depicts the outermost level of the system.

In terms of a "tree" or structure diagram, the "root" corresponds to the

outermost level, while the "leaves" (i.e., the triangles with no branches

to lower levels) correspond to the lower levels of the system. While a

user is in a particular level, the system displays a list of available

commands called the "prompt-line." If the system is running on a CRT

terminal, then the prompt-line will usually appear at the top of the

screen. Commands are usually invoked by typing a single character from

110

'I))

F- -

Uj

0- C

V)~

C)-

cm

W A

U ,

V)~

uli

the CONSOLE device. For example, the prompt line for the outermost level

of the system is:

Sys Options: D(efine), E(dit), R(etrieve), I(nventory),
A(ttach), Q(uit), B(oss)

By typing "R" the user will "descend" a level within the structure

diagram into a level called "RETRIEVE". Upon entering RETRIEVE, another

prompt-line detailing the set of commands available at the RETRIEVE level

of the system is displayed. The Q(uit) command causes the user to exit

from RETRIEVE and "ascend" back to the outermost command level of the

system. Now the user is back at the level in the system from which he

started after initially executing the system. Some commands within the

system prompt the user for more information, such as the name of a rela-

tion, a line number, etc. In these cases, the user enters the required

information followed by a carriage return (<cr>). If an error is made

in typing a portion of the information, the backspace key (or equivalent

key depending upon the system configuration) may be used to "back over"

and erase the erroneous part. If the user decides not to accept any

information at all, "escape" from most commands is by entering zero

characters; i.e., type <cr>. Unless otherwise stated, any input to a

yes/no question besides a "Y" is considered a no.

Sometimes there are more commands available than would be reasonable

to display at one time. When this is true, a question mark (?) will

appear at the end of the line. Typing "?" will cause a different prompt

to appear, such that more of the available commands will be displayed to

the user.

112

1.2 Outermost Level Commands: An Overview

A. D(efine)

Typing "D" while at the outermost command level of the system

causes the DEFINE segment to be brought into memory from disk. The

user may, while in DEFINE, define domains and relations, and perform

formatted input/output operations between mass storage and relations.

See section 2 for details.

B. E(dit)

"E" places the user in a level of the system called EDIT. This

section of the system contains commands used primarily for maintenance

of relations. See section 3 for more details.

C. R(etrieve)

This command allows the user to formulate and execute relational

queries on the database relations, and display the results. A workfile

is used to hold queries, and commands include "getting", "saving",

"editing", and "executing" this workfile. See section 4 for more details.

D. I(nventory)

Typing "I" at the SYSTEM level will cause a list of the domains

which have been defined and a list of the relations which have been

defined and attached (see E below) to be displayed on the CONSOLE.

E. A(ttach)

Type "A" at the SYSTEM level to enter ATTACH. The user is then

prompted for the relation to attach. Currently only an attach flag is

set in the relation definition. ATTACH will, in the next version, also

request security passwords from the user if he does not own the relation.

113

(Refer to section 2 for explanation.) Relations must be attached before

anything can be done with them.

F. B(oss)
This module is avaialable only to the database administrator (DBM).

It provides special commands such as initialization. See section 5 for

more details.

1.3 Starting the System

The system is started by executing the code file DATABASE.CODE. The

disk which contains this file must remain on-line dur 4ng the execution of

the system, in order to permit segment swapping.

Upon execution of the system, a welcome message is displayed and the

user is asked to enter an identification name. This name is associated

with all relations created by the user and is maintained as part of the

security system. The user is then asked if his system has 1 or 2 disk

drives. If 2 drives is indicated, then the domain and relation definitions

are assumed to exist on the disk in Drive 1, on a file called SETUP.DATA,

else Drive 0 is assumed to contain the disk with SETUP.DATA. If all goes

well, the system prompt-line is displayed; otherwise an error message is

generated.

The database manager identifies himself with a special identification

name. The DBM can create a file called SETUP.DATA if one does not exist.

1.4 Key Words and Names

Names in the system; e.g., relation names, attribute names, etc.,

may be any combination of I to 80 non-blank characters. Although not

guaranteed to be harmful, user defined names should not be any of the

following key words:

114

.

ALL DIVIDE JOIN PRODUCT UNION

AUG FROM MAX PROJECT VETO

BY GIVING MIN SELECT WHERE

COUNT IN ONE SORT $@$

DIFFERENCE INTERSECT OVER SUM

115

DEFINE PROCEDURES * SECTION 2

Type "D" at the SYSTEM level to enter DEFINE and the following prompt

is displayed:

(1) DEFINE DOMAINS
2 DEFINE A NEW RELATION
(3) INPUT FROM MASS STORAGE
(4) OUTPUT TO MASS STORAGE
(5) QUIT

SELECT 1 - 5 --->

The individual DEFINE commands are invoked by typing the number to

the left of the parenthesis. For example, "1" would invoke the DEFINE

DOMAINS command.

2.1 1) DEFINE DOMAINS

Defines domains to be used in defining relations. The user is

prompted to enter the domain name, the type of domain; i.e., Character,

Integer, or Real, and the number of characters or digits to be allowed.

The domain name must be unique. If other than digits are entered when

required, then 0 is assumed; and if the maximum integer size of the

machine is exceeded then the maximum integer is used. All yes/no ques-

tions must be answered with a "Y" or "N".

2.2 2) DEFINE A NEW RELATION

Define a new relation to consist of the following parts, each

prompted for individually:

Relation Name -- must be unique

Attribute name/domain name pairs -- attribute names must be unique

within the relation, domain names must have been previously defined.

The user is also asked if a sorted directory is to be maintained for

each attribute.

116

.44 V"

Primary key(s) -- the number of keys is entered, and then each attri-

bute to be a key is entered. The attribute must have been defined

and if a duplicate is entered, the user is allowed to prematurely

quit specifying keys. This exists to allow the user some way to

quit when he has entered a number larger than the total number of

attributes.

Security passwords -- the ID password is automatically set to the

identification name and the user is allowed to enter security pass-

words for:

READ -- prevents display of or relational operations on the

relation.

DELETE -- prevents deletion of any or all tuples.

MODIFY -- prevents modification of any tuple.

INSERT -- prevents insertion of any new tuples.

Constraints -- the user is allowed to specify constraints on the

attributes of this relation. These are used to further restrict the

domain of an attribute. The constraint can be of the form:

attribute{< value

or

attribute = (valuel, value2, value3, . .. , valueN).

Multiple constraints can exist on an attribute.

2.3 3) INPUT FROM MASS STORAGE

This command has not yet been implemented. Its purpose is to read

in data from disk file into a relation, specifying the format of the

data. Data which is incompatible with the domain type or constraints of

the relation attributes should be flagged as an error, and non-unique key

values should also be flagged.

117& __

2.4 4) OUTPUT TO MASS STORAGE

This command has not yet been implemented. Its purpose is to write

data in a relation to disk or to a printer in a particular format.

118

--I

EDIT PROCEDURES * SECTION 3

Type "E" at the SYSTEM level to enter EDIT and the following line is

displayed:

Edit Options: I(nsert), D(elete), M(odify), S(ave), R(esort), Q(uit),?

Typing "?" in response to this prompt displays more EDIT commands:

More Edit Options: C(opy), S(elect), P(assword), R(ename), Q(uit)

The individual EDIT commands are invoked by typing the letter found

to the left of the parenthesis. All EDIT commands have yet to be imple-

mented; but a description of each is given here.

3.1 I(nsert)

Insert a tuple into a relation. The key value(s) must be unique in

the relation and values must be in the domain and satisfy constraints of

each attribute. The relation must have been attached and the INSERT pass-

word (if any) specified if the relation is not owned by the user.

3.2 D(elete)

Delete tuples from a relation. A single tuple may be deleted by

specifying its key value(s) or a set of tuples if values are specified

for one or more other attributes. When doing multiple deletes a VETO

option exists to allow the user to individually decide on the deletion

of each tuple. The relation must have been attached and the DELETE pass-

word (if any) specified if the relation is not owned by the user.

119

.. .. .I

3.3 M(odify)

Modify tuples of a relation. The tuples to be modified are speci-

fied by giving values for any or all of the attributes. Then the values

for the attributes to change are specified, a blank value indicating that

the old value should remain. A VETO option similar to that in the D(elete)

command also exists for M(odify). The relation must have been attached

and the MODIFY password (if any) specified if the relation is not owned

by the user.

3.4 S(ave)

Save newly created relations; i.e., those created as a result of

relational operations on other relations (see section 4). The user can

specify security passwords and integrity constraints on the relation,

with tuples violating the constraints being deleted with user approval.

3.5 R(esort)

Sort the tuples of a relation. The relation must have been attached

and the READ password (if any) specified if the relation is not owned by

the user.

3.6 C(opy)

Copy a relation into another with the ability to change attribute

names and the domains they are defined on. The copy will specify the

mapping between attributes. If the domain type of an attribute in the

receiving relation is incompatible with the data values of the attribute

It is receiving then an error is reported and the COPY aborted. The only

transformation of type allowed is integer to real. Key attribute(s) in

the receiving relation must receive unique values. The relation being

120

copied must be attached and the READ password (if any) specified if the

relation is not owned by the user, and the receiving relation must have

been defined.

3.7 S(elect)

Select a tuple from a relation satisfying a specific constraint or

perform a function on the relation. The tuple selected can be:

-- any tuple
-- one in which an attribute has either a maximum or minimum value.

The functions include:

--COUNT(attributel, . . ., attributeN) which will give a numerical count
of the unique occurrences of the attributes listed.

--SUM(attribute) will give the sum of the value in each tuple of attribute.
--AUG(attribute) will give SUM(attribute) divided by the total number of

tuples in the relation.
SUM and AUG must have integer or real arguments.

The relation must be attached and the READ password (if any) speci-

fied if the relation is not owned by the user.

3.8 P(assword)

Change the security passwords of a relation attached and owned by

the user.

3.9 R(ename)

Change the relation name and/or attribute names of a relation

attached and owned by the user.

121

RETRIEVE PROCEDURES * SECTION 4

Type "R" at the system level to enter RETRIEVE and the following

prompt line is displayed:

Retrieve ops: G(et), S(ave), E(dit), X(ecute), D(isplay), Q(uit)

A concept central to the operation of RETRIEVE is the command file.

A command file contains one or more relational queries. The command

file can be created, modified, stored on disk, retrieved from disk, and

executed. The commands which can reside in a command file are described

below. Several examples are provided after that.

A. Union of two relations:

UNION relation1, relation2 GIVING relation3

where the first two relations must be union-compatible; that is,

they have the same number of attributes and the ith attribute of one

relation must be drawn from the same domain as the ith attribute of the

other relation. Relation3 will acquire the attribute names of relationi.

Relations 1 and 2 must have been attached and the READ password (if any)

specified if the user does not own the relation, and relation3 must be

unique.

B. Intersection of two relations:

INTERSECT relationl, relation2 GIVING relation2

where all restrictions under UNION apply.

122

C. Difference or relative complement of two relations:

DIFFERENCE relation1, relation2 GIVING relation3

where relation3 = relationl - relation2. All restrictions under

UNION apply.

D. Cartesian product of two relations:

PRODUCT relation1, relation2 GIVING relation3

where attribute names in relation3 will be the same as those in

relation 1 and 2 except that duplicate names will be prefixed by the

name of the relation it came from. Relations 1 and 2 must have been

attached and the READ password (if any) specified if the user does not

own the relation, and relation3 must be unique.

E. Join of two relations:

JOIN relationl, relation2 WHERE attrl op attr2 GIVING relation3

where attrl is in relation1 and attr2 is in relation2, op is =,

<, >. The JOIN operation is a subset of the cartesian product where the

condition of membership is specified in the WHERE clause. All restric-

tions under PRODUCT apply.

F. Project a relation over a subset of its attributes:

PROJECT relationl OVER attrl,attr2, . . .,attrN GIVING relation2

where attributes not specified in the OVER clause will be elimin-

ated and any duplicate tuples will be eliminated. Relationl must have

been attached and the READ password (if any) specified if the user does

not own the relation, and relation2 must be unique.

123
I

G. Select a subset of tuples from a relation:

SELECT ALL FROM relationl WHERE condition GIVING relation2

where condition is a boolean predicate on the attributes of

relation1 of the form al AND/6R a2 AND/OR a3 . . ., where each aN is of

the form attribute op value, where op is =, <, or> . The expression may

be fully parenthesized to indicate the proper precedence of the operators,

but if not then AND has precedence over OR. One or more blanks or commas

must be between each part of the command except that the left parenthesis

may be flush against an item to its right, and the right parenthesis may

be flush against an item to its left. Relation1 must have been attached

and the READ password (if any) specified if the user does not own the

relation, and relation2 must be unique.

H. Divide a binary relation by a unary relation:

DIVIDE relationl BY relation2 OVER attr GIVING relation3

where relationi is a binary relation, relation2 is a unary relation,

and attrl is an attribute of relationi defined on the same domain as the

attribute in relation2. Relation3 will be a unary relation with attribute

from relationl not attrl. Relation I and 2 must have been attached and

the READ password (if any) specified if the user does not own the relation,

and relation3 must be unique.

Examples: The following relations are used as the basis for examples:

124

Relation: part, Key: part# Relation: shipment, Key:(part#,supply#)

part# name location color part# supply# quantity

56 wheel Miami silver 78 4567 890

78 cam Boise red 100 45 900

79 tire Boise black 100 546 50

100 seat Dayton green 100 4567 435

711 fender Miami black 899 2309 1000

899 clock Enon red 899 4567 13

1245 light Boise silver

Relation: shippart, Key: part#

part# name location color

78 cam Boise red

100 seat Dayton green

899 clock Enon red

1000 cap Dayton blue

Using these relations examples of the output of the above commands is

shown beneath the command.

UNION shippart, part GIVING upart

upart

part# name location color

56 wheel Miami silver

78 cam Boise red

79 tire Boise black

100 seat Dayton green

711 fender Miami black

899 clock Enon red

(cont'd on next page)

125

66

part# name location color

1000 cap Dayton blue

1245 light Boise silver

INTERSECT shippart, part GIVING ipart

ipart

part# name location color

78 cam Boise red

100 seat Dayton green

899 clock Enon red

DIFFERENCE shippart, part GIVING dpart

dpart

part# name location color

1000 cap Dayton blue

PRODUCT shipment, dpart GIVING ppart

ppart

shipment-part# supply# quantity dpart-part# name location color

78 4567 890 1000 cap Dayton blue

100 45 900 1000 cap Dayton blue

100 546 50 1000 cap Dayton blue

100 4567 435 1000 cap Dayton blue

899 2309 1000 1000 cap Dayton blue

899 4567 13 1000 cap Dayton blue

126

JOIN part, shipment WHERE part# = part# GIVING shipment-description

shipment-description

part-part# name location color shipment-part# supply# quantity

78 cam Boise red 78 4567 890

100 seat Dayton green 100 45 900

100 seat Dayton green 100 546 50

100 seat Dayton green 100 4567 435

899 clock Enon red 899 2309 1000

899 clock Enon red 899 4567 13

PROJECT shipment-description OVER color, supply# GIVING c-and-s

c-and-s

color supply#

green 45

green 546

green 4567

red 4567

SELECT ALL FROM part WHERE location = Miami GIVING parts-in-Miami

parts-in-Miami

part# name location color

56 wheel Miami silver

711 fender Miami black

SELECT ALL FROM shipment WHERE (supply# > 4000 AND quantity < 800)

GIVING s-q

s-q

part# supply# quantity

100 4567 435

899 4567 13

127

PROJECT shipment OVER part#, supply# GIVING ps#

ps#

part# supply#

78 4567
100 45

100 546

100 4567

899 2309

899 4567

PROJECT s-q OVER supply# GIVING s#

S#

supply#

4567

DIVIDE ps# BY s# OVER supply# GIVING p#

p#

part#

78

100

899

Each RETRIEVE command may be split between two or more lines in the

command file if the split is made at a key word. For example, some of

the ways the last command in the examples above could be split is as

follows:

DIVIDE ps# DIVIDE ps# BY s# DIVIDE ps# BY s# OVER supply#
by s# over supply# GIVING p#
OVER supply# GIVING p#
GIVING p#

128

The commands may be combined in any sequence to formulate one or

more queries. For example, the query "Find the colors of all parts

supplied by any supplier in quantity>500" can be expressed as:

SELECT ALL FROM shipment WHERE quantity > 500 GIVING T1
JOIN part, T1 WHERE part# = part# GIVING T2
PROJECT T2 OVER color GIVING answer

The query is created and executed within a command file via the commands

available at the RETRIEVE level.

4.1 G(et)

Get a command file from disk into the workfile. A workfile is simply

a command file in memory. If the current workfile is not empty then the

user must decide whether or not to throwaway the current workfile before

getting another.

4.2 S(ave)

Save the workfile as a command file on disk. If a previous command

file was obtained using G(et) the user is asked if he wishes to save the

workfile with the same name. If a file already exists on the disk with

the same name, the user must decide whether or not to destroy the file

on disk before saving the workfile. If there is no room on the disk an

error message is generated.

4.3 E(dit)

Typing "E" at the RETRIEVE level causes the following prompt-line

to be displayed:

Edit ops: I(nsert), D(elete), B(egin), P(age), Q(uit) ---

129

. .. . __'I

Edit is used to create and modify command files while they are in

the workfile. After execution of each Edit command except P(age) the

first 20 or fewer lines of the command file is displayed on the screen,

preceded by a line number.

4.3.1 I(nsert)

Insert one or more lines into the workfile. If a workfile exists

then the user is prompted for a line number after which the new lines

should be entered. An entry of Oindicates before the first line and a

line number greater than the last line number indicates after the last

line. If a line in the file is specified, that line is displayed at the

top of the screen and the user allowed to insert lines until only a

return is entered. The workfile is renumbered after the insertion.

4.3.2 D(elete)

Delete a line from the workfile. The workfile is renumbered after

the deletion.

4.3.3 B(egin)

Display the first 20 or fewer lines of the workfile.

4.3.4 P(age)

Display 20 or fewer lines starting at a particular line number of

the workfile.

4.4 X(ecute)

Execute the command file in the current workfile. If syntax

errors are found in the file, they are reported to the user. This

causes execution to be aborted; however, the user can indicate that

the syntax of the rest of the file is to be checked for syntax errors

while ignoring the command in which the error occurred.

130

- J

Each query of the command file is executed and the result is put

into the temporary relation specified by the user in the query. If the

query is determined to do nothing, such as the union of a relation with

itself, then the query is not executed and this fact is reported to the

user.

Currently only the low-level procedure calls necessary to perform

each query are output.

4.5 D(isplay)

Display the contents of a relation on the screen.

When quitting the RETRIEVE level, the user must decide whether or not to

throwaway the current workfile, if one exists.

131

BOSS PROCEDURES * SECTION 6

If the user has logged on with the special DBMID as his identifica-

tion name, then access is allowed to the BOSS procedures as well as special

priviledges throughout the system. The following commands are currently

available in BOSS:

"E" -- exit BOSS.

"I" -- Inventory, same as that at the SYSTEM level.

"Z-- Initialization of the system, which currently deletes all
domain and relation definitions in memory. SETUP.DATA

will also be initialized if the user quits the system in
this configuration.

When logging on with the DBMID, all relations are automatically

attached and presumed owned by the user.

132

CHANGING THE SYSTEM * SECTION 7

Please refer to sections 3.3.1 and 3.3.2 of the UCSD Pascal Version

II.0 reference manual and current program listings before trying to change

the system.

The program is currently divided into a main body segment, four

segment procedures and a unit. Each segment is contained in a dummy pro-

gram in order to permit separate compilation. The unit contains all types,

variables, and procedures which are global to more than one segment. Thus,

by including the unit in each dummy program, access is allowed to those

elements. The format for each segment procedure is:

PROGRAM dummy-name;
USES COMMON; (*the unit is named COMMON*)
SEGMENT PROCEDURE name(parameter-list);

Local types, variables, and procedures;
BEGIN

body of name;
END; (*name*)
BEGIN
END. (*dummy name*)

Since the segments are separately compiled, the parameter list of

the segment procedure, must contain all global variables accessed or

modified by the procedure. The program or segment procedure which calls

for each segment procedure must have a dummy segment procedure with the

same name, so that it may compile properly. The format for the main

body segment is:

PROGRAM main;
USES COMMON;
local labels, types, constants, and variables;
SEGMENT PROCEDURE namel(---);
BEGIN
END; (*namel*)
SEGMENT PROCEDURE name2(---);
BEGIN
END; (*name2*)

133

other local procedures;
BEGIN

body of main;
END. (*main*)

The format for segment procedures which use other segments is the

same as the previous format for a segment procedure except dummy segment

procedures are included as local procedures.

Each segment procedure has a particular segment number from 11 to

15 associated with it. The main body segment has number 1 and the unit

has number 10. Other numbers are for Pascal use only. The way numbers

are assigned to the segment procedures is in first compiled, first

numbered order. Thus, in the above format for the main body segment

namel would be assigned 11, name2 assigned 12, etc. Therefore, in each

dummy program used to define a segment procedure an appropriate number

of dummy segments must exist before the defined segment to ensure that

the segment count is the same. Thus, for example, the format for segment

name2 would be:

PROGRAM dummy name;
USES COMMON;
SEGMENT PROCEDURE dummy namel;
BEGIN
END; (*dummy namel*)
SEGMENT PROCEDURE name2(

local labels, types, etc.
BEGIN

body of name2
END; (*name2*)
BEGIN
END. (*dumy name*)

The unit -- COMMON -- is compiled and placed in the system library

using the librarian program, LIBRARY.CODE. (See section 4.2 of the UCSD

Pascal manual.) When each program is compiled, the unit is retrieved

from the system library and used in the program; however, each program

must still be linked with the system library in order to bind the external

134

variable and procedure references into the unit. After each program is

compiled and linked, then the librarian may be used to put all the seg-

ments together into one code file. Each code file containing the seg-

ment is retrieved and linked into the proper space using its assigned

segment number into the overall file.

If a particular segment, including the main body segment, is to

be changed then the steps to be followed are:

1) Change the source code for the segment.

2) Compile the program containing the segment.

3) Link the code file to the system library.

4) Using the librarian create a new overall file passing all
unchanged segments to the new file and linking in the changed
segment.

If the unit has to be changed then after compiling it and placing

it into the system library, each program must be recompiled, linked to

the system library, and then put together with the librarian.

ji

135

ROW.

APPENDIX C

BASIC PROCEDURES FOR IMPLEMENTING

CODD's RELATIONAL ALGEGRA (REF 12)

These procedures are designed on the following assumptions:

1. The permanent relations stored in the database (i) may or may not be
stored in sort order on one domain, and (ii) may have no directories at
all, or may have several directories over different domains.

2. Directories are small in size compared to relations.

3. The number of secondary storage page accesses can generally be reduced
by analysis of directories to determine those pages containing tuples satis-
fying a given condition.

4. Temporary relations produced during expression evaluation may be either
stored in their entirety or piped via a small buffer.

5. The number of page accesses will be minimized by always processing a
stored relation in sequential order and making maximum use of each page
while it is in main memory.

6. The execution of each procedure should be extravagant in neither time
nor space.

The basic procedures are as follows.

1. PROJECT1 (Relation, domainset)
(Assumption: domainset contains the primary key domains of Relation)

Tuples from Relation are processed in the order of supply and only
the domains on domainset are preserved in each output tuple.

2. PROJECT2 (Relation,domainset)
(Assumption: Relation will be supplied sorted on some domain in domainset.)

Tuples from Relation are processed in the order of supply and only the
domains in domainset are preserved in each output tuple. All tuples having
a given value on the sort domain are checked for duplicates before output
tuples are piped upward.

3. PROJECT3 (Relation, domainset, sortdomain)

Tuples from Relation are processed to simultaneously remove domains not
in domainset and to sort the resulting tuples on sortdomain; in the sorting
process duplicates are removed. Output is piped upward.

136

4. SELECT (Relation, condition)
(Assumption: condition is a boolean expression of restriction and selec-
tion predicates on the domains of Relation).

We will say a subexpression is "resolvable" if pointers to all and
only tuples satisfying the subexpression can be determined by directory
analysis. Ths "resolution" of a subexpression is such a set of pointers.

The resolutions of all resolvable subexpressions in condition are
determined. If the whole expression is resolvable, its resolution is
sorted. Tuples referenced by the resolution are accessed sequentially
and piped upward. Otherwise, by directory analysis alone, a "minimal"
set S is constructed which contains pointers to at least all tuples satis-
fying condition. S is sorted. Each tuple referenced by S is checked for
satisfaction of condition. This can be done by using known subexpression
resolutions, direct checks of tuple values or both. Tuples satisfying
condition are piped upward. More details for implementing these algorithms
may be found in (1).

S. JOIN] (Relationl, domainl,=,domain2, Relation2, Unary Relation)
(Assumption: Either Relation1 or Relation2 is unary. Unary Relation
states which of the two relations is unary.)

For purposes of exposition we assume that Unary Relation is Relationi -

the other case is symmetrical. If Relation2 does not have a directory
ay D) over domain2 then one i5 created. For each value in Relation1, D

is searched to find pointers to tuples in Relation2 which have the same
domain2 value. These pointers are stored in a set P. P is sorted into
address order. Tuples referenced by P are accessed sequentially. Each
tuple is concatenated with another copy of its domain2 value and piped
upward.

6. JOIN2 (Relationl, domainl, = , domain2, Relation2)
If Relationl and Relation2 are not already sorted on domain1 and

domain2, then they are sorted appropriately. Relationl and Relation2 are
accessed sequentially looking for tuple pairs satisfying the condition
domainl in Relation1 = domain 2 in Relation2). Access is advanced along
Relation1 or Relation2 depending on a comparison of domainl and domain2.
Tuple pairs satisfying the condition are concatenated and piped upward.

7. JOIN3 (Relationl, domainl, condition, domain2, Relation2, Sort Relation)
(Assumption: Sort Relation is either Relationl or Relation2. This para-
meter specifies which input relation is to be stored in sort order on its
"joining" domain. The other input relation will be piped. Condition is
<9 < > , or>.)

For exposition purposes let us assume that Sort Relation is Relationl -

the discussion for the other case follows from symmetry. If Relationl is
not already sorted on domainl then it is sorted accordingly. If a direc-
tory (say D) is not available for Relationl over domainl, then one is
created. Relation2 is input and the value of each tuple over domain2 is
determined. The directory D is consulted to locate the beginning/end
point of tuples which satisfy the condition.

137

II { 7 --

(domainl in Relationl condition domain2 in Relation2)

Since Relation1 is sorted on domainl, these tuples can be accessed sequen-
tially. Each tuple satisfying the above criterion is concatenated to the
tuple from Relation2 and piped upward.

8. UNION1 (Relationl, Relation2)
(Assumption: Relation1 and Relation2 are both sorted over a common domain.)

Relationl and Relation2 are merged together and duplicates are removed.
Output is piped upward.

9. UNION2 (Relationl, Relation2)
(Assumption: Relation1 and Relation2 both have directories over a common
domain.)

Select a domain over which both relations have a directory. From these
directories obtain a list of pointers (P) to tuples which are potentially
in the intersection of Relation1 and Relation2. Pipe upward tuples in one
relation (say Relation1), copying all tuples which are in the potential
intersection into a relation I. Now pipe upward tuples in Relation2 pulling
out those that are in P and testing them for membership in I. Those tuples
already present in I are discarded.

10. UNION3 (Relationl, Relation2)
(Assumption: Relation1 and Relation2 have a common domain, such that Rela-
tionI has a directory over this domain and Relation2 is sorted over this
domain, or vice versa.)

Select a domain D satisfying the above assumption. Assume Relation1
has the directory over D. Pipe upward tuples in Relation2 copying out
into temporary relation I those tuples whose D values occur in the directory
for Relationl, and maintain a list of pointers (P) into the directory to
those values which occur in Relation2. Now pipe upward tuples in Relation1
filtering out tuples pointed to by P and which occur in I.

11. UNION4 (Relationl, Relation2)

If neither Relation1 or Relation2 have a directory then one is created.
The procedure is then similar to UNION3 except a binary search on the
directory is necessary to create I and P.

12. INTERi (Relationl, Relation2)

(Assumption: As in UNIONI.)

The relations are merged and only common tuples are piped upward.

13. INTER2 (Relationl, Relation2, Order Relation)
(Assumption: As in UNION2. Order Relation is either Relation1 or Relation2,
and determines whether the output is ordered as Relationl or as Relation2.)

The general operation is similar to UNION2. If Order Relation is
Relatlon2, then the first pass is made through Relationl to create I and P.

138

- - ~W~ .1*

The next pass is through Relation2 and only those tuples occurring in I
are piped upward.

14. INTER3 (Relation1, Relation2, Order Relation)
(Assumption: As in UNION3. Order Relation is as described in INTER2.)

The general operation is similar to UNION3. The first pass is alwaysmade through the relation without a directory over the common domain.

Order Relation determines whether, on the pass through the relation with
a directory, output occurs directly when common tuples are found or sub-
sequently by passing up common tuples in I.

15. INTER4 (Relation1, Relation2, Order Relation)

The general operation is similar to UNION4. Order Relation determines

the output order as in INTER3.

16. DIFFI (Relationl, Relation2)
(Assumption: As in UNIONi.)

Relation 1 and Relation2 are merged and only those tuples in Relationl
not found in Relation2 are piped upward.

17. DIFF2 (Relationi, Relation2)
(Assumption: As in UNION2.)

The general operation is as in UNION2. The first pass is always made
through Relation2 to create I. Tuples are only output on the second pass
when Relation1 is checked against I via P.

18. DIFF3 (Relation1, Relation2)
(Assumption: As in UNION3.)

The general operation is as in UNION3. If Relation1 has the directory

then tuples are output only on the second pass when Relation1 is run off
against I via P. However, if Relation2 has the directory, then tuples
which are not in the potential intersection are output on the pass through
Relationl. When Relation2 has been run off against I, additional tuples
which are not in the real intersection are output.

19. DIFF4 (Relationl, Relation2)
(Assumption: As in UNION4.)

The general operition is similar to UNION4. The discussion in DIFF3
concerning output applies here also.

20. CARPROD (Relationi, Relation2, Order Relation)
(Assumption: Order Relation is either Relationi or Relation2 and determines
whether the output has the same order as Relationi or Relation2.)

If Order Relation is Relationi, then Relation2 is stored. For each
tuple in Relationi a complete pass of Relation2 is made; each tuple is
concatenated to the Relationi tuple and the result is piped upward.

139

.L

If Order Relation is Relation2, then the roles of Relationl and Rela-
tion2 are reversed.
21. DIVIDE (Relation1, D.Setl, D.Set2, Relation2, SortD)

(Assumption: If Relation1 will be supplied sorted on some domain in thecomplement of D.Setl then SortD = "SO" (stored order). Otherwise, SortD
will be some domain in the complement of D.Setl, and this domain will
determine the output sort order.)

Project the D.Set2 domains from Relation2 and store the Relation1 on
SortD. Scan Relation1 sequentially and examine each block of tuples con-
taining the same value in the sort domain. If all tuples in T occur in
the D.Setl domains of a block associated with the same tuple t in the
non-D.Setl domains, then output t. Find and output all instances of t
in the block. Repeat for all blocks in Relation1.

140

VITA

Mark Roth was born August 12, 1957 at Elgin, Illinois. He attended
Fenton High School at Bensenville, Illinois, graduating June 1975. He then
accepted a four-year ROTC scholarship to attend Illinois Institute of1Technology, graduating a year early in May 1978, with a B.S. in Computer
Science, and a commission in.the USAF.

He was immediately selected to attend the Air Force Institute of
Technology. On December 15, 1979, he graduated with an M.S. in Computer
Science.

He is a member of IEEE Computer Society and the ACM.

Permanent Address: 4N650 Church Road
Bensenville, IL 60106

j

UNC LASS I F I ED
SECURITY CLASSIFICATION OF THIS PAGE (%%en Deat Entered)

REPORT DOCUMENTATION PREAD INSTRUCTIONSREOTDCMNAINPG BEFORE COMPLETING FORM

1. REPORT NUMBER 12 GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AFIT/GCS/EE/79-14
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

T!hE DESIGN AND IMPLEMENTATION OF A FEDAGOGICAL
RELATIONAL DATABASE SYSTEM 6. PERFORMING 01G. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Mark A. Roth
2LT USAF

9. PERFORMING ORGANIZATION NAME AND ADDRESS tO. PROGRAM ELEMENT. PROJECT. TASK

Air Force Institute of Technology (AFIT/EN) AREA & WORK UNIT NUMBERS

Wright-Patterson AFB Ohio 45433

I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

15 DEC 1979
13. NUMBER OF PAGES

151
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)

UNCLASSIFIED

ISa. DECL ASSI FICATIDN/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Repor.)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. if different from Report)

IS. SUPPLEMENTARY NOTES

Approved for public release; lAW AFR 190-17

J. PiHipps,' MJor USAF
Director of Public Affairs

19. KEY WORDS (Continue on reverse side If necessary and identify by block number)

Relational Databases
Computers and Education

Query language
Query optimization

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

A relational database system was designed with the goal of obtaining as near

optimal behavior from the system as possible. In addition, the database was

to be Implemented as a general purpose system but with specific provisions for

teaching database management and manipulation. Toward these goals, Investiga-

tions were made Into previous studies in the literature. The advantages and

disadvantages of relational systems wre explored, and based on certain criteria

a relational algebra was chosen as the basis for the data manipulation and

DD , 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASS I F I ED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Rntere

= .

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(n;u Data EnIered)

I definition language. Solutions to the problems of relational databases,
Including Integrity, redundancy, and efficiency, were presented In this
context. With this background, a top-down structured design of the systeT.
was completed. Techniques used to manaqt> data entry, I.e., the user Inter-

I faca, and techniques to transform those I#.puts In order to optimize their
execution were deveoped and Implemented. These transformations formed the
basis of an automatic programer used to analyze and efficiently refine high
bee query specifications supplied by the user. This approach sought to

minmiz quryresponise time and space utilization by: (1) performing global

Iquery opliztoad(2) coordinating sort orders In temporary relations.

UNCLASS IF I ED

SECURITY CLASSIFICATION OF ?-I PAGE(When Date Entered)

